4,245 research outputs found
Assessing Ability to Forecast Geomorphic System Responses to Climate and Land-Use Changes
As the global community faces the effects of ongoing and future climate and land-use changes (C&LUC), geoscientists are called to action to assess the risks associated with such changes, assist with forecasts of future Earth states, quantify hazards to life, and suggest reasonable adaptation strategies. Earth surface scientists have developed conceptual and mathematical models for how geomorphic systems, including those associated with natural hazards that put trillions of dollars in infrastructure and tens of millions of lives at risk, will respond to and give feedback on C&LUC
Fractional Hamiltonian Monodromy from a Gauss-Manin Monodromy
Fractional Hamiltonian Monodromy is a generalization of the notion of
Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A.
Sadovskii and B. I. Zhilinskii for energy-momentum maps whose image has a
particular type of non-isolated singularities. In this paper, we analyze the
notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin
Monodromy of a Riemann surface constructed from the energy-momentum map and
associated to a loop in complex space which bypasses the line of singularities.
We also prove some propositions on Fractional Hamiltonian Monodromy for 1:-n
and m:-n resonant systems.Comment: 39 pages, 24 figures. submitted to J. Math. Phy
Methods for enzyme library creation: which one will you choose? A guide for novices and experts to introduce genetic diversity
Enzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions. The expert will discover an up-to-date tool to freshen up their repertoire (Section I) and learn of the newest methods that are likely to become a mainstay (Section II). We focus primarily on in vitro methods, presenting the advantages of each method. Our ultimate aim is to offer a selection of methods/strategies that we believe to be most useful to the enzyme engineer, whether a first-timer or a seasoned user
Participatory arts interventions promote interpersonal and intergroup prosocial intentions in middle childhood
We report the results of two experiments which test the potential of arts engagement for promoting prosocial intentions. Experiment 1 (N = 216) tested the impact of a participatory arts intervention (vs. a control condition) on children's empathy and interpersonal prosocial intentions. Experiment 2 (N = 174) tested the impact of a participatory arts intervention (vs. a control condition) on children's prosocial intentions toward outgroup members under competitive and non-competitive conditions. Experiment 1 showed that the participatory arts intervention significantly increased children's interpersonal prosocial intentions, but not their empathy. Experiment 2 showed that, under competitive conditions, the participatory arts intervention significantly increased prosocial intentions toward outgroup members, an effect that persisted for six months beyond the intervention. Under non-competitive conditions, the participatory arts intervention consolidated improvements in prosocial intentions toward outgroup members. Overall, the results confirm the hypothesis that participatory arts engagement can promote prosocial intentions during middle childhood
Estimating the functional form for the density dependence from life history data
Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments
Geo-additive models of Childhood Undernutrition in three Sub-Saharan African Countries
We investigate the geographical and socioeconomic determinants of childhood undernutrition in Malawi, Tanzania and Zambia, three neighboring countries in Southern Africa using the 1992 Demographic and Health Surveys. We estimate models of undernutrition jointly for the three countries to explore regional patterns of undernutrition that transcend boundaries, while allowing for country-specific interactions. We use semiparametric models to flexibly model the effects of selected so-cioeconomic covariates and spatial effects. Our spatial analysis is based on a flexible geo-additive model using the district as the geographic unit of anal-ysis, which allows to separate smooth structured spatial effects from random effect. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques. While the socioeconomic determinants generally confirm what is known in the literature, we find distinct residual spatial patterns that are not explained by the socioeconomic determinants. In particular, there appears to be a belt run-ning from Southern Tanzania to Northeastern Zambia which exhibits much worse undernutrition, even after controlling for socioeconomic effects. These effects do transcend borders between the countries, but to a varying degree. These findings have important implications for targeting policy as well as the search for left-out variables that might account for these residual spatial patterns
Landau levels in the case of two degenerate coupled bands: kagome lattice tight-binding spectrum
The spectrum of charged particles hopping on a kagome lattice in a uniform
transverse magnetic field shows an unusual set of Landau levels at low field.
They are unusual in two respects: the lowest Landau levels are paramagnetic so
their energies decrease linearly with increasing field magnitude, and the
spacings between the levels are not equal. These features are shown to follow
from the degeneracy of the energy bands in zero magnetic field. We give a
general discussion of Landau levels in the case of two degenerate bands, and
show how the kagome lattice tight-binding model includes one special case of
this more general problem. We also discuss the consequences of this for the
behavior of the critical temperature of a kagome grid superconducting wire
network, which is the experimental system that originally motivated this work.Comment: 18 pages, 8 figure
- …