101,688 research outputs found

    Geological and geophysical field investigations from a lunar base at Mare Smythii

    Get PDF
    Mare Smythii, located on the equator and east limb of the Moon, has a great variety of scientific and economic uses as the site for a permanent lunar base. Here a complex could be established that would combine the advantages of a nearside base (for ease of communications with Earth and normal operations) with those of a farside base (for shielding a radio astronomical observatory from the electromagnetic noise of Earth). The Mare Smythii region displays virtually the entire known range of geological processes and materials found on the Moon; from this site, a series of field traverses and investigations could be conducted that would provide data on and answers to fundamental questions in lunar geoscience. This endowment of geological materials also makes the Smythii region attractive for the mining of resources for use both on the Moon and in Earth-Moon space. We suggest that the main base complex be located at 0, 90 deg E, within the mare basalts of the Smythii basin; two additional outposts would be required, one at 0, 81 deg E to maintain constant communications with Earth, and and the other, at 0, 101 deg E on the lunar farside, to serve as a radio astronomical observatory. The bulk of lunar surface activities could be conducted by robotic teleoperations under the direct control of the human inhabitants of the base

    Information flow through a model of the C. elegans klinotaxis circuit

    Full text link
    Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm C. elegans. The models are grounded in the neuroanatomy and currently known neurophysiology of the worm. The unknown model parameters were optimized to reproduce the worm's behavior. Information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4) The neck carries non-uniform distribution about changes in concentration. Thus, not all directions of movement are equally informative. Each of these findings corresponds to an experimental prediction that could be tested in the worm to greatly refine our understanding of the neural circuit underlying klinotaxis. Information flow analysis also allows us to explore how information flow relates to underlying electrophysiology. Despite large variations in the neural parameters of individual circuits, the overall information flow architecture circuit is remarkably consistent across the ensemble, suggesting that information flow analysis captures general principles of operation for the klinotaxis circuit

    Thermodynamic properties of Mg_2SiO_4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite

    Get PDF
    Polycrystalline samples of Mg_2SiO_4 forsterite and wadsleyite were synthesized and then dynamically loaded to pressures of 39–200 GPa. Differences in initial density and internal energy between these two phases lead to distinct Hugoniots, each characterized by multiple phase regimes. Transformation to the high-pressure phase assemblage MgO + MgSiO_3 perovksite is complete by 100 GPa for forsterite starting material but incomplete for wadsleyite. The datum for wadsleyite shocked to 136 GPa, however, is consistent with the assemblage MgO + MgSiO_3 post-perovksite. Marked increases in density along the Hugoniots of both phases between ∼130 and 150 GPa are inconsistent with any known solid-solid phase transformation in the Mg_2SiO_4 system but can be explained by melting. Density increases upon melting are consistent with a similar density increase observed in the MgSiO_3 system. This implies that melts with compositions over the entire Mg/Si range likely for the mantle would be negatively or neutrally buoyant at conditions close to the core-mantle boundary, supporting the partial melt hypothesis to explain the occurrence of ultra-low velocity zones at the base of the mantle. From the energetic difference between the high-pressure segments of the two Hugoniots, we estimate a Grüneisen parameter (γ) of 2.6 ± 0.35 for Mg_2SiO_4-liquid between 150 and 200 GPa. Comparison to low-pressure data and fitting of the absolute pressures along the melt Hugoniots both require that γ for the melt increases with increasing density. Similar behavior was recently predicted in MgSiO_3 liquid via molecular dynamics simulations. This result changes estimates of the temperature profile, and hence the dynamics, of a deep terrestrial magma ocean

    Physiological cost of walking in those with chronic fatigue syndrome

    Get PDF
    <b>Purpose:</b> To examine the physiological cost of walking in subjects with chronic fatigue syndrome (CFS) and a matched control group, walking at their preferred and at matched walking speeds. <b>Methods:</b> Seventeen people with CFS and 17 matched-controls participated in this observational study of physiological cost during over-ground gait. Each subject walked for 5 min at their preferred walking speed (PWS). Controls then walked for 5 min at the same pace of their matched CFS subject. Gait speed and oxygen uptake, gross and net were measured and oxygen uptake was expressed per unit distance ambulated. CFS subjects completed the CFS-Activities and Participation Questionnaire (CFS-APQ). <b>Results:</b> At PWS the CFS group walked at a slower velocity of 0.84 ± 0.21 m s<sup>-1</sup> compared to controls with a velocity of 1.19 ± 0.13 m s<sup>-1</sup> (p < 0.001). At PWS both gross and net oxygen uptake of CFS subjects was significantly less than controls (p = 0.023 and p = 0.025 respectively). At matched-velocity both gross and net physiological cost of gait was greater for CFS subjects than controls (p = 0.048 and p = 0.001, respectively). <b>Conclusion:</b> The physiological cost of walking was significantly greater for people with CFS compared with healthy subjects. The reasons for these higher energy demands for walking in those with CFS have yet to be fully elucidated

    Managing the Regulatory State: The Experience of the Bush Administration

    Get PDF
    This Article traces the history of Presidential management of the regulatory state up to the administration of President George W. Bush. It focuses on the latter\u27s implementation of smarter regulation, an approach to regulation based on unfunded mandates on the private sector implemented through the Office of Management and Budget, an organization within the Executive Office of the President. It finds cost-benefit analysis an essential, yet often neglected, tool for implementing efficient and effective regulations. It concludes the policies promoted under President Bush\u27s OMB have effectively cut costs by streamlining the rule-making process and discouraging adopting new federal rules, but cautions there is still a sea of overlapping regulations and conflict over turf among agencies causing the administrative state to steadily rise in cost

    The stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid

    Get PDF
    The stochastic response of nanoscale oscillators of arbitrary geometry immersed in a viscous fluid is studied. Using the fluctuation-dissipation theorem it is shown that deterministic calculations of the governing fluid and solid equations can be used in a straightforward manner to directly calculate the stochastic response that would be measured in experiment. We use this approach to investigate the fluid coupled motion of single and multiple cantilevers with experimentally motivated geometries.Comment: 5 pages, 5 figure

    Evolved solar systems in Praesepe

    Get PDF
    "Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics." Original paper can be found at: http://scitation.aip.org/"We have obtained near-IR photometry for the 11 Praesepe white dwarfs, to search for an excess indicative of a dusty debris disk. All the white dwarfs are in the DAZ temperature regime, however we find no indications of a disk around any white dwarf. We have, however determined that the radial velocity variable white dwarf WD0837+185 could have an unresolved T8 dwarf companion that would not be seen as a near-IR excess.Final Accepted Versio

    High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry

    Get PDF
    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2 L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a Pb-207-Pb-204 double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28 +/- 21 pg(1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about +/- 1to +/- 10%(1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12 +/- 4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (+/- 2sd) of 700-1500 ppm and 1000-2000ppm were achieved for Pb-207/Pb-206, Pb-208/Pb-206 and Pb-206/Pb-204, Pb-207/Pb-204, Pb-208/Pb-204, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor Pb-204 isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the Pb-206/Pb-204 ratios are well correlated with Pb-207/Pb-206, underlining the significant improvement achieved in the measurement of the minor Pb-204 isotope

    The Gravitational Lens Candidate FBQ 1633+3134

    Get PDF
    We present our ground-based optical imaging, spectral analysis, and high resolution radio mapping of the gravitational lens candidate FBQ 1633+3134. This z=1.52, B=17.7 quasar appears double on CCD images with an image separation of 0.66 arcseconds and a flux ratio of ~3:1 across BVRI filters. A single 0.27 mJy radio source is detected at 8.46 GHz, coincident to within an arcsecond of both optical components, but no companion at radio wavelengths is detected down to a flux level of 0.1 mJy (3 sigma). Spectral observations reveal a rich metal-line absorption system consisting of a strong Mg II doublet and associated Fe I and Fe II absorption features, all at an intervening redshift of z=0.684, suggestive of a lensing galaxy. Point spread function subtraction however shows no obvious signs of a third object between the two quasar images, and places a detection limit of I > 23.0 if such an object exists. Although the possibility that FBQ 1633+3134 is a binary quasar cannot be ruled out, the evidence is consistent with it being a single quasar lensed by a faint, metal-rich galaxy.Comment: 24 pages, 5 figures. Accepted by AJ. A calibration error affecting B and V band apparent magnitudes has been corrected. The conclusions of the paper are not change
    corecore