4,606 research outputs found

    Educational planning for utilization of space shuttle (ED-PLUSS). Executive summary: Identification and evaluation of educational uses and users for the STS

    Get PDF
    The development and application of educational programs to improve public awareness of the space shuttle/space lab capabilities are reported. Special efforts were made to: identify the potential user, identify and analyze space education programs, plan methods for user involvement, develop techniques and programs to encourage new users, and compile follow-on ideas

    Identification and evaluation of educational uses and users for the STS. Educational planning for utilization of space shuttle ED-PLUSS

    Get PDF
    A planning and feasibility study to identify and document a methodology needed to incorporate educational programs into future missions and operations of the space transportation system was conducted. Six tasks were identified and accomplished during the study. The task statements are as follows: (1) potential user identification, (2) a review of space education programs, (3) development of methodology for user involvement, (4) methods to encourage user awareness, (5) compilation of follow-on ideas, and (6) response to NASA questions. Specific recommendations for improving the educational coverage of space activities are provided

    Modeling Quantum Optical Components, Pulses and Fiber Channels Using OMNeT++

    Full text link
    Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum mechanics to generate and distribute unconditionally secure cryptographic keys. While QKD offers the promise of unconditionally secure key distribution, real world systems are built from non-ideal components which necessitates the need to model and understand the impact these non-idealities have on system performance and security. OMNeT++ has been used as a basis to develop a simulation framework to support this endeavor. This framework, referred to as "qkdX" extends OMNeT++'s module and message abstractions to efficiently model optical components, optical pulses, operating protocols and processes. This paper presents the design of this framework including how OMNeT++'s abstractions have been utilized to model quantum optical components, optical pulses, fiber and free space channels. Furthermore, from our toolbox of created components, we present various notional and real QKD systems, which have been studied and analyzed.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201

    Holography in the EPRL Model

    Full text link
    In this research announcement, we propose a new interpretation of the EPR quantization of the BC model using a functor we call the time functor, which is the first example of a CLa-ren functor. Under the hypothesis that the universe is in the Kodama state, we construct a holographic version of the model. Generalisations to other CLa-ren functors and connections to model category theory are considered.Comment: research announcement. Latex fil

    The Influence of Diffusion on Surface Reaction Kinetics

    Get PDF
    An analysis is given of diffusion-influenced surface reactions using models similar to those used in solution kinetics. It is shown that a pure two-dimensional model of surface reactions yields no steady state rate constant. By incorporation of adsorption and desorption processes the deficiencies in the two-dimensional results are eliminated. Expressions are derived for diffusion-controlled and diffusion-influenced rate constants for surface reactions. Expressions are also derived for the activation energies of these surface reactions. It is shown that the activation energy for diffusion-controlled reactions wiII approximately be given by the activation energy for surface diffusion. Bounding expressions are developed for the activation energy for diffusion-influenced reactions. Comparisons are made betweeen Langmuir-Hinshe1wood and Eley-Rideal mechanisms, and it is found that Langmuir-Hinshelwood mechanisms should be more important than Eley-Rideal processes for many surface reactions

    Savory Grazing System: A Research Update

    Get PDF
    Livestock performance, forage use and soil compaction were studied in Repeated Seasonal (RSG) and High Performance Short Duration Grazing (HPSDG) systems on mixed prairie in good to excellent condition in western South Dakota. In May 1981 and 1982, yearling ewes were allocated to six RSG and six HPSDG pastures and removed in October of each year. Stocking rates in both systems were periodically adjusted to result in 40 to 50% terminal use of shortgrasses. In both years, the stocking rates in HPSDG were approximately twice those in RSG. Livestock performance was the same in both systems. Forage use was more uniform and higher proportions of midgrasses were grazed in HPSDG than in RSG. Soil compaction increased with grazing intensity in RSG but was constant at a value equivalent to moderate grazing intensity in HPSDG

    Coherent states, constraint classes, and area operators in the new spin-foam models

    Full text link
    Recently, two new spin-foam models have appeared in the literature, both motivated by a desire to modify the Barrett-Crane model in such a way that the imposition of certain second class constraints, called cross-simplicity constraints, are weakened. We refer to these two models as the FKLS model, and the flipped model. Both of these models are based on a reformulation of the cross-simplicity constraints. This paper has two main parts. First, we clarify the structure of the reformulated cross-simplicity constraints and the nature of their quantum imposition in the new models. In particular we show that in the FKLS model, quantum cross-simplicity implies no restriction on states. The deeper reason for this is that, with the symplectic structure relevant for FKLS, the reformulated cross-simplicity constraints, in a certain relevant sense, are now \emph{first class}, and this causes the coherent state method of imposing the constraints, key in the FKLS model, to fail to give any restriction on states. Nevertheless, the cross-simplicity can still be seen as implemented via suppression of intertwiner degrees of freedom in the dynamical propagation. In the second part of the paper, we investigate area spectra in the models. The results of these two investigations will highlight how, in the flipped model, the Hilbert space of states, as well as the spectra of area operators exactly match those of loop quantum gravity, whereas in the FKLS (and Barrett-Crane) models, the boundary Hilbert spaces and area spectra are different.Comment: 21 pages; statements about gamma limits made more precise, and minor phrasing change

    Colored Group Field Theory

    Full text link
    Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex
    • …
    corecore