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The influence of diffusion on surface reaction kinetics 
David L. Freemana) and Jimmie D. Doll 

University o/California. Los Alamos National Laboratory. Chemistry Division. Los Alamos. New Mexico 87545 
(Received 16 December 1982; accepted 10 February 1983) 

An analysis is given of diffusion-influenced surface reactions using models similar to those used in solution 
kinetics. It is shown that a pure two-dimensional model of surface reactions yields no steady state rate 
constant. By incorporation of adsorption and desorption processes the deficiencies in the two-dimensional 
results are eliminated. Expressions are derived for diffusion-controlled and diffusion-influenced rate constants 
for surface reactions. Expressions are also derived for the activation energies of these surface reactions. It is 
shown that the activation energy for diffusion-controlled reactions wiII approximately be given by the 
activation energy for surface diffusion. Bounding expressions are developed for the activation energy for 
diffusion-influenced reactions. Comparisons are made betweeen Langmuir-Hinshe1wood and Eley-Rideal 
mechanisms, and it is found that Langmuir-Hinshelwood mechanisms should be more important than 
Eley-Rideal processes for many surface reactions. 

I. INTRODUCTION 

It has long been recognized that diffusion is an im­
portant step in the kinetics of rapid reactions in solu­
tion. In the limit of very rapid reactions the diffUSion 
step may be rate limiting and such reactions are termed 
diffusion controlled. Diffusion-controlled reactions in 
solution have been given an extensive theoretical treat­
ment and an excellent review of the subject has been 
given by Lin, Li, and Eyring. 1 

For heterogeneous reactions occurring at the surface 
of solids it is manifest that diffusion is an important 
step for a variety of reactions. In analogy with solution 
kinetics many very rapid surface reactions can be ex­
pected to be diffusion controlled. For example when a 
dissociatively adsorbed diatomic molecule desorbs 
from the surface of a crystal it can be expected that the 
recombination of the atoms will occur very rapidly 
when the atoms reach a close critical distance. The 
rate limiting step for such a recombination reaction 
may prove to be the rate at which the atoms diffuse to­
gether on the surface. 

For diffusion-controlled reactions in solution, informa­
tion about the rates can be extracted from a knowledge 
of the diffusion constants of the reactants. 1 Recently, 
diffusion constants associated with the migration of 
adsorbates on crystal surfaces have become available 
both theoretically2-5 and experimentally. 6 As a conse­
sequence, it is timely to determine expressions for 
rate constants in terms of diffusion constants for those 
cases where the influence of surface diffusion is large. 

In the present work we analyze and develop expres­
Sions for the rate constants of diffusion-influenced sur­
face reactions. Our treatment is based upon the 
Smoluchowski7,8-Collins-KimbaU9 approach to solution 
kineticS and includes features used in theories of thin 
film nucleation. 10 In a mechanistic sense we concentrate 
on those reactions which obey Langmuir-Hinshelwood 
kinetics II between surface adsorbed species s -A and 

aJVisiting staff member at Los Alamos National Laboratory. 
Permanent address: Department of Chemistry, The Uni­
veristy of Rhode Island, Kingston, Rhode Island 02881. 

s-B to produce gas-phase products AB(g) 

k 
s-A + s-B=.2s +AB(g) , 

II 

as opposed to the classical Eley-Rideal mechanism II 

(1) 

(2) 

Our development will allow the construction of expres­
sions to compare the relative rates of mechanisms (1) 
and (2). 

The contents and organization of the remainder of this 
paper are as follows: In Sec. II we briefly review the 
treatment of diffusion-influenced reactions in solution. 
This review establishes the notation and methodology 
used in the remainder of the paper. In Sec. III we de­
velop the formalism to study the influence of diffusion 
on surface reactions. We begin Sec. III by introducing 
a two-dimensional model for surface reactions. Although 
this model will be found to be unphysical the derived ex­
pressions will be useful in evaluating limits of the results 
discussed subsequently. We follow by developing a mod­
el which includes an adsorption and desorption mecha­
nism. Within this model we develop expressions for 
reaction rate constants and analyze the expected be­
havior of the activation energy for diffusion-influenced 
surface reactions. We also develop an expression for 
the relative rates of Eley-Rideal to Langmuir-Hinshel­
wood processes. In Sec. IV we discuss the nature of 
the approximations used in our treatment and summarize 
our conclusions. 

II. REVIEW OF DIFFUSION-INFLUENCED REACTIONS 
IN SOLUTION 

Although diffusion-influenced reactions in solution 
have been treated extensively elsewhere I the main body 
of the remainder of this paper will be clarified by brief­
ly reviewing the treatment of Smoluchowski 7,8 -Collins 
and Kimball. 9 This review will also allow us to es­
tablish our methodology and notation. 

We consider a solution whose initial state consists of 
reactant A and B molecules distributed uniformly. The 
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molecules diffuse, and a reaction is allowed to occur 
whenever an A and B molecule come within a critical 
distance RA of each other. If A and B molecules a dis­
tance RA apart react with unit probability the reaction is 
said to be diffusion controlled. Otherwise, the reaction 
is said to be diffusion influenced. 

It is useful to imagine an A molecule as fixed and the 
B molecules as diffusing towards the A molecule. If we 
let Ws (r, t) be the probability that a B molecule is at co­
ordinate r at time t relative to an unreacted A molecule, 
then it can be shown8 that Ws (r, t) satisfies the diffusion 
equation 

(3) 

where D is the sum of the diffusion constants for mole­
cules A and B; i. e., 

(4) 

Equation (4) will be valid whenever the motion of diffusing 
A and B mOlecules is uncorrelated. The function Ws (r, t) 
can also be interpreted as the concentration of B mole­
cules. The subtleties associated with these interpreta­
tions has been discussed in detail by Collins and Kim­
ball. 9 In this work we will be concerned with the solu­
tions to Eq. (3) at steady state; 1. e., when 

aWs(r,t) =0 
at • (5) 

Consequently, we seek solutions to Laplace's equation 

(6) 

where the subscript SS in Eq. (6) denotes steady state. 
For spherical reactants like atomic species Eq. (6) is 
best solved in spherical polar coordinates so that 

d
2
W, +! dWss = 0 • 

dr r dr 
(7) 

The boundary conditions imposed on Eq. (7) are the 
radiation boundary conditions of Collins and Kimball. 9 

At the critical reaction radius RA , we set 

(8) 

where keq is the reaction rate constant once the reactants 
are at the critical radius. When keq = 0 we have no re­
action possible and obtain the pure reflection boundary 
condition 

(~) -0 
dr r,sA-

and when keq is infinite we obtain the pure absorption 
boundary condition 

(9) 

(10) 

The boundary condition given in Eq. (10) was used by 
Smoluchowski 7.8 and is appropriate when the reaction 
is diffusion controlled. In this work we will find solu­
tions subject both to boundary conditions (8) and (10) 
since both cases are physically important. 

A s a second boundary condition we surround our A 
molecule with a fictitious outer boundary at RB and set 

(11) 

where Co is the initial concentration of B molecules. 
The boundary condition expressed in Eq. (11) is equiv­
alent to finding steady-state solutions from an initial 
uniform concentration of Co. The physical solution will 
be found in the limit that Rs becomes infinite. 

We begin by finding the solution to Eq. (7) using the 
absorption boundary condition given in Eq. (10). The 
solution found by standard techniques is 

_ (l-Rt/r) 
Wss(r) - Co (1 -RA/Rs) 

In the limit that RB becomes infinite we obtain 

Wss.,.(r) = lim Wss(r) , 
SB--

(12) 

(13) 

(14) 

The diffusion-controlled rate constant for the reaction 
can be obtained from the defining relation 

k3D = 41TR1D ( dWsa..) 
Co dr r.BA 

(15) 

(16) 

The expression for the diffusion-controlled rate con­
stant given in Eq. (16) can be found in many textbooks. 12 

If the reaction is diffUSion-influenced rather than dif­
fusion-controlled solutions to Eq. (7) must be found using 
the boundary condition of Eq. (8), A solution by stan­
dard methods gives 

Wu,(r) = C. f' + (' ._') L keqRB RA - RB + 41TDRB 

keg/r ] - k..,,(_l _...!...) + 41TD • 
RA RB 

In the limit that RB becomes infinite we obtain 

Wss (r) =- lim WssI(r) 
1e RB "-

= Co( 1- kegRA/r) 
k.." + 41TDRA 

The diffUSion-influenced rate constant is given by 

k3DI = 
41TR!D( dWSS1_) 

dr r.RA 

k3D keg 
k3D + k.." • 

(17) 

(18) 

(19) 

(20) 

(21) 

An expression analogous to Eq. (21) was recently given 
by Szabo et al. 13 It is clear that the rate constant as­
sociated with the radiation boundary conditions of Eq. 
(8) can be obtained from the absorption boundary con­
dition solution and the application of Eq. (21). When 
k.." is very large as in diffUSion controlled processes 

(22) 

In general, 
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(23) 

so that an evaluation of the diffusion-controlled rate 
constant from Eq. (16) will give an upper bound to the 
true rate constant. 

We can intuit Eq. (21) from simple time sequence 
considerations. For bimolecular processes like those 
we consider here the half-life of reactants for any step 
is given by 

1 
tO/2l1 = COk

f 
' (24) 

where k f is the rate constant associated with step i. 
In the systems we consider the half-life of a reactant 
is equal to the half-life of the diffusion step plus the half­
life of the reaction step, i. e. , 

t(1/2)3Dl = t<1/2>3D + t(1/2)"'1 , 

or 

1 1 1 
-=-+-
k3DI k3D keq 

which is equivalent to Eq. (21). 

III. DIFFUSION-INFLUENCED REACTIONS ON 
SURFACES 

(25) 

(26) 

With our review of diffusion-influenced reactions in 
solution complete we are in a position to analyze the cor­
responding problem for surface reactions. Before be­
ginning the analysis some differences between the surface 
and solution systems are useful to identify. In solution 
kinetics the diffusion is three-dimensional, whereas in 
surface chemistry the diffusion can be imagined to be 
quasi-two-dimensional. The difference in dimen­
Sionality will lead to some mathematical difficulties. 
Another important difference between surface and solu­
tion kinetics arises from the heterogeneous environment 
of a surface reaction. For a surface reaction the pres­
ence of reactants in the gas-phase results in an inflow 
and outflow of material via adsorption and desorption. 
Of course, no such adsorption or desorption events occur 
in solution reactions. 

A. A two-dimensional model 

Although adsorption and desorption can be expected 
to be important we begin our analysis by examining 
surface diffusion-influenced reactions in the absence of 
any mechanism which allows material to flow into or 
out of our system. Although we shall find the resulting 
solution to be unphysical we present the results for 
comparison with limiting forms of more phYSical models 
to be derived subsequently. 

In polar coordinates the tWO-dimensional steady-state 
diffUSion equation is 

d
2
WF + 1. dWw = 0 • 

dr r dr 
(27) 

If we apply absorbing boundary conditions to Eq. (27), 

WW(RA) = 0 , 

WW(RB ) = Co , 

(28) 

(29) 

the solution to Eq. (27) is 

r 
ColnR 

Ww(r) = A 

In RB 
RA 

(30) 

In the limit that RB becomes infinite Ww (r) vanishes for 
all r. In two dimensions the effects of the absorbing 
boundary conditions are very long range and no finite 
steady -state concentration can be attained. Similar 
conclusions concerning tWO-dimensional behavior have 
been given by Emeis and Fehder. 14 By implication no 
steady-state rate constant can be defined in two dimen­
sions. To see this we define 

k - 2rrRA D 
w - Co 

2nD =--
I RB n-

RA 

(31) 

(32) 

It is clear that kw also vanishes as RB becomes infinite. 

If radiation boundary conditions rather than absorbing 
boundary conditions are used to solve Eq. (27) we write 

2rrRAD (
dW

d 2P ) = keqWw(RA) • 
r TaRA 

It is easy to show that the resulting rate constant is 
given by 

k - k2D kIf> 
2D 1 - kw + keq 

(33) 

(34) 

in complete analogy with Eq. (21). Because k2D vani­
shes as RB becomes infinite it is clear that k2D 1 also 
vanishes. 

The origin of the vanishing rate constant in the two­
dimensional model is the neglect of adsorption and de­
sorption processes. It is not the result of unphysically 
confining material to be purely two-dimensional. We 
will introduce an adsorption-desorption mechanism in the 
next section. Before leaving this section we consider 
the behavior of diffusing material confined to a slab of 
thickness I. We consider an absorber of radius RA 
placed at the origin of our coordinate system. Con­
centric with the absorber we place an outer sphere of 
radius RB • We seek solutions to the three-dimensional 
steady-state diffusion equation in cylindrical coordinates 

B2W~z +.!. BW2DZ + B2W~z = 0 (35) 
B r Br Bz 

subject to the boundary conditions 

and 

WWZ (RA, z) = 0 , 

Wwz (RB , z) = Co , 

(
8W2DZ) -0 

8Z • .,./12 - • 

(36) 

(37) 

(38) 

The boundary condition expressed in Eq. (38) imposes 
perfect reflection at z = ± (l/2) and confines material 
to flow in a slab of thickness I. For small 1 we have 
diffusion in a thin film which is more physical than our 
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original two-dimensional model. 

We can immediately write that 

lim lim W2DZ (r, z) = W2D (r) • 
RB - .. r-RB 

(39) 

Equation (39) follows from the fact that W2D (r) satisfies 
Eq. (35) along with the boundary conditions [Eqs. (36)­
(38) ] at the limit. The rate constant can be written 

k - 2rrRD (dW2DZ ) 
2DZ - Co dr r'R ' 

(40) 

where the derivative is evaluated at any radius R, R 
»1, at steady state. If we choose R to be RB , we see 
that 

lim k2DZ = 0 • 
RB-" 

Consequently, no finite steady-state rate constant 

(41) 

exists for a thin film in the absence of adsorption and 
desorption processes. The difficulty with the solution to 
Eq. (27) does not arise from unphysically considering 
matter to be two-dimensional. We have checked these 
conclusions numerically by Monte-Carlo solution of 
Eq. (35).15,16 

B. Inclusion of absorption and desorption processes 

The loss and capture of reactant molecules from the 
gas phase can be investigated from the modified two­
dimensional diffusion equation 

aw W 
- =DV2W+J--
at T ' 

(42) 

where T is the lifetime of an absorbed reactant to de­
sorption and J is the amount of reactant per unit time 
per unit area flowing onto the surface. This same 
equation has been used to study thin film nucleation 
processeslO although the boundary conditions appropriate 
for thin film nucleation are somewhat different than those 
we use for reaction kinetics. At steady state we solve 

(
d

2
W 1 dW,) 

DT ~ + :;: ~ - WD + JT = 0 • (43) 

Only two parameters occur in Eq. (43); DT and JT. The 
flow of reactant onto the surface represented by J can 
either arise from an external source or from an equi­
librium vapor phase. To understand this equivalence 
we follow Langmuir17 and assume that the desorption 
rate is proportional to WD and the adsorption rate is 
proportional to Wo - WD where Wo is the concentration on 
the surface at full coverage. Then 

aWD = DV2W, _ WD + WO-WD 
at D T4 T. 

(44) 

where T 4 is the desorption lifetime and T. is the lifetime 
of atoms in the gas phase. If we identify T- 1 with (T;1 

+ 'T;;I) and J with (WolT.) then we see Eq. (44) is equiv­
alent to Eq. (42). 

We now solve Eq. (43) with absorbing boundary condi­
tions corresponding to diffusion-controlled reactions. 
We use the boundary conditions 

(45) 

(46) 

As before, the physical solution to Eq. (43) will occur 
for infinite RB • Using elementary methods Eq. (43) can 
be solved to give 

WD(r) = JT[l + AKo(yr) + Blo(yr)] , (47) 

where In(x) and Kn(x) are modified Bessel functions of the 
first and second kind of order n, 

y = (DTt l
/ 2 , (48) 

and 

B - Ko(yRA,) [£0. _ 1 + Ko(YRB )] 

- Ko(yRA ) Io(yRB ) -Io(yRA ) Ko(yRB ) J-r Ko(yRA )' 

(50) 

The parameter y, defined by Eq. (48) is the inverse of 
half the average distance traveled by a reactant mole­
cule in the time before desorption. 

Before we let RB become infinite it is of interest to 
determine the behavior of Eq. (47) as y approaches 
zero. This limit corresponds to long absorption life­
times and large diffusion constants. To determine the 
limits we use well known expressions18 for Bessel func­
tions. From Eq. (49), 

Co limA = - --"--­
R 

JTln R; 
and from Eq. (50) 

Co Inyr 

J'T In ~: 
r 

Coln
R
-

A 

-1- COln~RA,J 
JTln~ 

(51) 

(52) 

, (53) 

(54) 

(55) 

We see that WD(r) is equivalent to W2D (r) for small y 
and finite RB • It is of interest that WD(r) becomes in­
dependent of J as y becomes small. 

The physical solution occurs for infinite RB • Again 
using well known properties of Bessel functions it is ele­
mentary to show that 

lim WD(r);; W .. (r) , (56) 
RB-OO 

= J'T [1 -Ko(yr) J. 
Ko(yRA ) 

(57) 

By incorporating an adsorption and a desorption pro­
cess into the two-dimensional diffusion equation we find 
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-­.. .... 

o 
I 

FIG. 1. Graph of the concentration of reactant molecules as 
a function of the distance from the absorber [Eq. (57)J. 

a finite and well behaved solution for WD(r) at infinite 
RB • Another interesting limit is 

lim W .. (r) = JT , (58) 
~.oo 

=Coo , (59) 

which is the steady-state concentration far from the 
adsorber. To gain further insight into the behavior of 
Woo(r) we consider the graph of Woo(r) shown in Fig. 1. 
We find in the circular region of radius y-l about the 
reacting A molecule a depletion of B molecules. For 
distances beyond y-l from the A molecule the concen­
tration of B rapidly approaches Coo, a constant. 

Because of the flux of reactant molecules from the 
vapor phase the reaction rate in this model contains two 
terms. One term is a consequence of the diffusion pro­
cess and is similar to the rate expressions we considered 
previously. In addition there is a term corresponding to 
the reaction of adsorbed molecules with reactant mole­
cules from the gas phase. Incorporating both terms we 
obtain the rate expression 

F= FA +FD , 

where 

FA = 1TR! J 

is the direct adsorption rate, and 

FD = 21TRAD (dd
W
") 
r ~.RA 

(60) 

(61) 

(62) 

is the diffusion rate. We will discuss the importance of 
FA in Sec. III C when we compare the Eley-Rideal and 
Langmuir-Hinshelwood mechanisms mentioned in the 
Introduction. Presently, we evaluate Eq. (62) from Eq. 
(57) to obtain 

_ Kt(yRA,) 
FD - 21TRADJTy Ko(yR

A
) 

If we let 

A= yKt(yRA) 
Kg(yRA) 

(63) 

(64) 

Eq. (63) becomes 

FD = 21TRADAC .. (65) 

By definition the diffusion-controlled rate constant is 

k - FD 
D- Coo 

so that 

kD = 21TRA DA • 

(66) 

(67) 

Comparison of Eq. (67) with its solution kinetics analog 
given in Eq. (16) show striking Similarities. However 
Eq. (67) is more complex than Eq. (16) owing to the con­
tributions from the Bessel functions in A [Eq. (64)]. 
Expressions similar to Eq. (67) are often derived 
heuristically in textbooks. 19 While such expressions 
are qualitatively correct they are quantitatively inac­
curate. A careful treatment requires the application 
of Eq. (67). 

We complete this section by finding the solution to 
Eq. (43) subject to the radiation boundary condition 

21TRAD (d~dDI) = kOllWDt(RA) 
r ""RA 

(68) 

in place of Eq. (45). The solution, found by elementary 
methods, is given by 

(69) 

where 

and 

- kOllJTIo(YRA)}/ {21TRADJTYKt(YRA)+ kOll JTKhR A) 

+ ~:«~::~ [21TRADJTylt(yRA) - koqJTIo(YRA)]} (70) 

H = CO/JT - 1 -GKg(yRB) 
Io(yRB) 

(71) 

Using the properties of the Bessel functions we obtain 
for the infinite RB limit 

(72) 

(73) 
The rate constant for the diffusion process is defined 
as usual to give 

k= 21TRAD (dWDt .. ) , 
JT dr ",oRA 

(74) 

- 2 R D ktgyKt(yRA) 
- n A 21TRADyKt(yRA) + k~o(yRA) , 

(75) 

kDkeq 
krJ + koq 

(76) 

which is identical to the result given in Eqs. (21) and 
(34). As we indicated in Sec. II, Eq. (76) makes mani­
fest that 
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20'~~~~roTO~~rrTT".-roTT~~~ 

1.8 

1.6 

1.4 

1.2 

LANGMUI R- HINSHELWOOD 

x 

ELEY­
RIDEAL 

FIG. 2. Graph of the ratio of the Eley-Rideal rate to the 
Langmuir-Hinshelwood rate [Eq. (79)]. In most cases the 
Langmuir-Hinshelwood mechanism is dominant (i. e., x« 2.4). 
See the text. 

and rate constants evaluated from Eq. (67) will give 
upper bounds to the true rate constants. 

C. Mechanistic considerations 

(77) 

As mentioned in the Introduction, diffusion-influenced 
reactions by assumption must obey Langmuir-Hinshel­
wood kinetics as expressed by Eq. (1). We can address 
the importance of some Eley-Rideal mechanisms by 
examining Eq. (60). If we ignore those Eley-Rideal 
processes which occur via the physisorption of a pre­
cursor from the gas phase and only involve the direct 
interaction between gas phase and adsorbed reactants, 
then the Eley-Rideal rate is given by Eq. (61). We can 
then evaluate the ratio of the Eley-Rideal rate to the 
Langmuir-Hinshelwood rate from the defining relation 

"= !A v F . 
D 

Using Eqs. (61) and (63) we obtain 

o( ) = xKo(x) 
x 2K

1
(x) , 

where 

x= ')IRA 

From the properties of Bessel functions we can 
evaluate the limits 

and 

1. ,,() x
2

1nx 
lmvX = ---
r~O 2 

lim o(x) = ~2 • 
x~ .. 

(78) 

(79) 

(80) 

(81) 

(82) 

We see that the dominant mechanism is Langmuir-Hinshel­
wood for strongly bound reactants with large diffusion 
constants (small x). Conversely, the Eley-Rideal 
mechanism will be most important when the reactants 
are weakly bound with small diffusion constants (large 
x). A graph of o(x) is given in Fig. 2. A rough mea-

sure of the switch between the Eley-Rideal and Lan­
gmuir-Hinshelwood mechanisms occurs at the value of 
x-when o(x) = 1. In Fig. 2 we have denoted the Lang­
muir-Hinshelwood and Eley-Rideal regions by dividing 
the graph at x = 2. 4 where o(x) = 1. 

To gain further insight into the relative importance of 
the two mechanisms in physical systems we note that 
for RA = 2 A, x= 2.4 implies that (Dr)1/2 ~ 1 A. Conse­
quently, Langmuir-Hinshelwood behavior will occur 
when the average distance a reactant travels before de­
sorption is on the order of a lattice spacing or greater. 
This is a very short distance, and we might expect most 
reactions to follow Langmuir-Hinshelwood kinetics. 
It is important to recognize that o(x) is independent of 
J so that the Langmuir-Hinshelwood process will pre­
dominate even if a large external flux of reactant mole­
cules is applied to the surface. The Langmuir-Hinshel­
wood mechanism has been found experimentally to pre­
dominate for a variety of reactions. 20,21 We see that 
an explanation for the dominance of Langmuir-Hinshel­
wood kinetics can be obtained from an analysis of Eq. 
(79). 

D. Behavior of the activation energy 

For diffusion-controlled surface reactions the activa­
tion energy is defined by 

E= _ dlnkD , 
df3 

(83) 

where f3 = l/ks T, ks being the Boltzmann constant. If 
we assume both D and T to have Arrhenius behavior 

and 

and use Eq. (67) it is easy to show that 

E=E .L (EA -ED)dkD 
D + kD 2 fly' 

(84) 

(85) 

(86) 

(87) 

For many systems we need to evaluate Eq. (87) for ')IRA 
«1 [See Sec. III C]. In this limit 

. ED -E, 
11m E = ED + (/~) ( ) ,.~O 21nRA vDoTo +f3 ED -EA 

(88) 

The small ')I approximation will be best at low tempera­
tures by virtue of Eqs. (48), (84), and (85). From Eq. 
(88) we see that 

limE= ED • 
T -0 

(89) 

Consequently, for diffusion-controlled reactions the 
activation energy should approximately be equal to the 
activation energy for diffusion. From Eq. (88) we see 
that E is a function of temperature. For surface re­
actions we can expect non-Arrhenius behavior at higher 
temperatures even for atom-atom recombination reac­
tions where no steric effects are present. 
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For diffusion-influenced reactions the experimental 
activation energy will exhibit the additional complica­
tions arising from the form of Eq. (76). When keq is 
very large relative to kD the reaction is diffusion con­
trolled and the activation energy will be given by Eq. 
(87). When kD is large compared to keq diffusion is un­
important, and the rate constant is approximately given 
by keq. For large kD the activation energy will be con­
trolled by the activation energy associated with keq. To 
analyze the case when keq and kD are comparable we 
write 

kD '" kDo exp(-ED/3) , 

keq '" keqo exp(-Eeq/3) • 

Using Eqs. (76) and (83) we obtain 

E'" ED + E _ EDkDo exp(-ED/3) + Eeqkeq exp(-E~) 
eq kD 0 exp( - ED/3) + keqO exp( - Eeq/3 

_ kDEeq + keaED 
- kD+keq 

(90) 

(91) 

(92) 

(93) 

From Eq. (93) we can show that E lies between ED and 
Eeq. For example, suppose Eeq is greater than ED' 
Using Eq. (93) we have 

(94) 

and 

E _ E '" keg (ED -Eeg) <0 
eq kD + keq . 

(95) 

Consequently, 

ED ::f E::f Eeq • (96) 

If Eeq is less than ED we can similarly show that 

(97) 

From Eqs. (96) and (97) it is apparent that the activa­
tion energy for surface recombination processes is 
bounded by ED and Eeq. In particular, the activation 
energy is not necessarily identical to the desorption 
energy. 

IV. CONCLUSIONS 

USing ideas found to be successful in solution kinetics 
we have developed expressions to evaluate rate constants 
and activation energies for surface reactions. The ex­
preSSions for diffusion-controlled rate constants are 
particularly useful for theoretical studies of surface 
reactions, since they provide an upper bound estimate 
of the true rate constant in terms of information about 
the diffusion constants for the reactive fragments. 
These fragment diffusion constants are determined by 
a portion of the entire potential energy surface that would 
be required for the complete treatment of reaction dy­
namics and are consequently more easily determined. 
As more complete potential surfaces become available 
the calculated rate constants can be refined by the ap­
plications of Eq. (76). We are using the formalism 
developed in this work to evaluate rate constants for 
heterogeneous atom-atom recombination reactions, 

and the results of these calculations will appear sepa­
rately. 

In solution kinetics rate constants for diffusion-con­
trolled processes calculated from Eq. (16) are exact 
to the extent that the classical diffusion equation is 
exact. The corresponding approximations for dif­
fusion-controlled surface reactions are more severe, 
because Eq. (42) is a two-dimensional representation 
of the true diffusion process. A more accurate approach 
to diffusion-controlled surface reactions would include 
surface binding forces and involve solutions to the cor­
responding Smoluchowski equation. We have avoided 
this approach, because the diffusion equation provides 
analytic expressions. We feel our solutions are at 
least qualitatively correct. Numerical studies to evalu­
ate the errors in the two-dimensional model are in 
progress. 

An approximation in the formalism presented in this 
work, which is less obvious than the imposition of two­
dimensional behavior, is the fact that the diffUSion equa­
tion is known to be inaccurate at short distances from 
the absorber. 8 To obtain accurate expressions it is 
necessary to solve the Fokker-Planck equation for the 
full phase-space distribution function, a difficult prob­
lem with absorbing boundary conditions. 22 We are 
presently analyzing the errors in the diffusion equation 
by studying the equivalent Brownian dynamics problem. 
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