544 research outputs found

    Gravitational Constraint Combinations Generate a Lie Algebra

    Get PDF
    We find a first--order partial differential equation whose solutions are all ultralocal scalar combinations of gravitational constraints with Abelian Poisson brackets between themselves. This is a generalisation of the Kucha\v{r} idea of finding alternative constraints for canonical gravity. The new scalars may be used in place of the hamiltonian constraint of general relativity and, together with the usual momentum constraints, replace the Dirac algebra for pure gravity with a true Lie algebra: the semidirect product of the Abelian algebra of the new constraint combinations with the algebra of spatial diffeomorphisms.Comment: 10 pages, latex, submitted to Classical and Quantum Gravity. Section 3 is expanded and an additional solution provided, minor errors correcte

    Dirac Quantization of Two-Dimensional Dilaton Gravity Minimally Coupled to N Massless Scalar Fields

    Get PDF
    It is shown that the Callan-Giddings-Harvey-Strominger theory on the cylinder can be consistently quantized (using Dirac's approach) without imposing any constraints on the sign of the gravitational coupling constant or the sign (or value) of the cosmological constant. The quantum constraints in terms of the original geometrical variables are also derived

    Consistency of Semiclassical Gravity

    Get PDF
    We discuss some subtleties which arise in the semiclassical approximation to quantum gravity. We show that integrability conditions prevent the existence of Tomonaga-Schwinger time functions on the space of three-metrics but admit them on superspace. The concept of semiclassical time is carefully examined. We point out that central charges in the matter sector spoil the consistency of the semiclassical approximation unless the full quantum theory of gravity and matter is anomaly-free. We finally discuss consequences of these considerations for quantum field theory in flat spacetime, but with arbitrary foliations.Comment: 12 pages, LATEX, Report Freiburg THEP-94/2

    Free fields via canonical transformations of matter-coupled 2D dilaton gravity models

    Get PDF
    It is shown that the 1+1-dimensional matter-coupled Jackiw-Teitelboim model and the model with an exponential potential can be converted by means of appropriate canonical transformations into a bosonic string theory propagating on a flat target space with an indefinite signature. This makes it possible to consistently quantize these models in the functional Schroedinger representation thus generalizing recent results on CGHS theory.Comment: 15 pages, Late

    Remarks on the Reduced Phase Space of (2+1)-Dimensional Gravity on a Torus in the Ashtekar Formulation

    Get PDF
    We examine the reduced phase space of the Barbero-Varadarajan solutions of the Ashtekar formulation of (2+1)-dimensional general relativity on a torus. We show that it is a finite-dimensional space due to existence of an infinite dimensional residual gauge invariance which reduces the infinite-dimensional space of solutions to a finite-dimensional space of gauge-inequivalent solutions. This is in agreement with general arguments which imply that the number of physical degrees of freedom for (2+1)-dimensional Ashtekar gravity on a torus is finite.Comment: 13 pages, Latex. More details have been included and the expression for the finite residual gauge transformations has been worked ou

    Mass Superselection, Canonical Gauge Transformations, and Asymptotically Flat Variational Principles

    Full text link
    The phase space reduction of Schwarzschild black holes by Thiemann and Kastrup and by Kucha\v{r} is reexamined from a different perspective on gauge freedom. This perspective introduces additional gauge transformations which correspond to asymptotically nontrivial diffeomorphisms. Various subtleties concerning variational principles for asymptotically flat systems are addressed which allow us to avoid the usual conclusion that treating such transformations as gauge implies the vanishing of corresponding total charges. Instead, superselection rules are found for the (nonvanishing) ADM mass at the asymptotic boundaries. The addition of phenomenological clocks at each asymptotic boundary is also studied and compared with the `parametrization clocks' of Kucha\v{r}.Comment: 15 pages, ReVTeX, Minor changes made in response to referee's commment

    Free-Field Realization of D-dimensional Cylindrical Gravitational Waves

    Get PDF
    We find two-dimensional free-field variables for D-dimensional general relativity on spacetimes with D-2 commuting spacelike Killing vector fields and non-compact spatial sections for D>4. We show that there is a canonical transformation which maps the corresponding two-dimensional dilaton gravity theory into a two-dimensional diffeomorphism invariant theory of the free-field variables. We also show that the spacetime metric components can be expressed as asymptotic series in negative powers of the dilaton, with coefficients which can be determined in terms of the free fields.Comment: 15 pages, Late

    Towards the graviton from spinfoams: the 3d toy model

    Full text link
    Recently, a proposal has appeared for the extraction of the 2-point function of linearised quantum gravity, within the spinfoam formalism. This relies on the use of a boundary state, which introduces a semi-classical flat geometry on the boundary. In this paper, we investigate this proposal considering a toy model in the (Riemannian) 3d case, where the semi-classical limit is better understood. We show that in this limit the propagation kernel of the model is the one for the harmonic oscillator. This is at the origin of the expected 1/L behaviour of the 2-point function. Furthermore, we numerically study the short scales regime, where deviations from this behaviour occur.Comment: 8 pages, 2 figures; v3 revised versio

    A Probability-Base Alerting Logic for Aircraft on Parallel Approach

    Get PDF
    This document discusses the development and evaluation of an airborne collision alerting logic for aircraft on closely-spaced approaches to parallel runways. A novel methodology is used when links alerts to collision probabilities: alerting thresholds are set such that when the probability of a collision exceeds an acceptable hazard level an alert is issued. The logic was designed to limit the hazard level to that estimated for the Precision Runway Monitoring system: one accident in every one thousand blunders which trigger alerts. When the aircraft were constrained to be coaltitude, evaluations of a two-dimensional version of the alerting logic show that the achieved hazard level is approximately one accident in every 250 blunders. Problematic scenarios have been identified and corrections to the logic can be made. The evaluations also show that over eighty percent of all unnecessary alerts were issued during scenarios in which the miss distance would have been less than 1000 ft, indicating that the alerts may have been justified. Also, no unnecessary alerts were generated during normal approaches

    Quantum creation of an Inhomogeneous universe

    Get PDF
    In this paper we study a class of inhomogeneous cosmological models which is a modified version of what is usually called the Lema\^itre-Tolman model. We assume that we have a space with 2-dimensional locally homogeneous spacelike surfaces. In addition we assume they are compact. Classically we investigate both homogeneous and inhomogeneous spacetimes which this model describe. For instance one is a quotient of the AdS4_4 space which resembles the BTZ black hole in AdS3_3. Due to the complexity of the model we indicate a simpler model which can be quantized easily. This model still has the feature that it is in general inhomogeneous. How this model could describe a spontaneous creation of a universe through a tunneling event is emphasized.Comment: 21 pages, 5 ps figures, REVTeX, new subsection include
    • …
    corecore