We find a first--order partial differential equation whose solutions are all
ultralocal scalar combinations of gravitational constraints with Abelian
Poisson brackets between themselves. This is a generalisation of the Kucha\v{r}
idea of finding alternative constraints for canonical gravity. The new scalars
may be used in place of the hamiltonian constraint of general relativity and,
together with the usual momentum constraints, replace the Dirac algebra for
pure gravity with a true Lie algebra: the semidirect product of the Abelian
algebra of the new constraint combinations with the algebra of spatial
diffeomorphisms.Comment: 10 pages, latex, submitted to Classical and Quantum Gravity. Section
3 is expanded and an additional solution provided, minor errors correcte