285 research outputs found

    Abrasion by aeolian particles: Earth and Mars

    Get PDF
    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates

    The utilization of ERTS-1-generated photographs in the evaluation of the Iranian playas as potential locations for economic and engineering development

    Get PDF
    The author has identified the following significant results. False-color composites made from ratioed and stretched transparencies, generated from CCT's of ERTS-1, have enhanced hydrologic and morphologic differences within the playa surficial sediments. A composite of ratios 4/6, 5/7,15/61 and 4/7 using blue, red, yellow, and green, respectively, was useful in separating wet, water, and dry areas in the salt crust and for delineating smooth and rough salt where relief was less than 20 cm

    Processing Multi-Spectral Scanning Electron Microscopy Images for Quantitative Microfabric Analysis

    Get PDF
    Multi-spectral image analysis is a powerful method to characterise quantitatively the mineralogy and microfabric of soils, sediments, and other particulate materials. Backscattered scanning electron microscope (SEM) images of polished, resin-impregnated samples are grouped with the corresponding X-ray elemental maps using classification methods commonly used in remote sensing. However, the resulting mineral-segmented images require processing to render them suitable for quantification. In the past, this has been done subjectively and interactively, but the new objective methods described in this paper largely eliminate this subjectivity. An intensity gradient magnitude image of the original backscattered electron image is used as the basis of an interactive erosion and dilation sequence to generate skeleton outlines defining the edges of the mineral grains. The areas defined within the skeleton areas are then classified as a particular mineral according to the predominant feature in the corresponding mineral-segmented image. Subsequent processing tackles the problems of \u27holes\u27 defined by the skeleton outlines, and the over-segmentation associated with certain classes of mineral grain. Further methods to deal with particles made up of more than one mineral are considered. The matrix and porosity information is recombined to generate an image suitable for analysis using feature size statistics or general orientation analysis. The techniques described can be combined to permit batch processing of images. Applications of the techniques are illustrated on a soil from the East Anglian Breckland

    Survivors of intensive care with type 2 diabetes and the effect of shared care follow-up clinics: study protocol for the SWEET-AS randomised controlled feasibility study

    Get PDF
    Published online: 13 October 2016Background: Many patients who survive the intensive care unit (ICU) experience long-term complications such as peripheral neuropathy and nephropathy which represent a major source of morbidity and affect quality of life adversely. Similar pathophysiological processes occur frequently in ambulant patients with diabetes mellitus who have never been critically ill. Some 25 % of all adult ICU patients have diabetes, and it is plausible that ICU survivors with co-existing diabetes are at heightened risk of sequelae from their critical illness. ICU follow-up clinics are being progressively implemented based on the concept that interventions provided in these clinics will alleviate the burdens of survivorship. However, there is only limited information about their outcomes. The few existing studies have utilised the expertise of healthcare professionals primarily trained in intensive care and evaluated heterogenous cohorts. A shared care model with an intensivist- and diabetologist-led clinic for ICU survivors with type 2 diabetes represents a novel targeted approach that has not been evaluated previously. Prior to undertaking any definitive study, it is essential to establish the feasibility of this intervention. Methods: This will be a prospective, randomised, parallel, open-label feasibility study. Eligible patients will be approached before ICU discharge and randomised to the intervention (attending a shared care follow-up clinic 1 month after hospital discharge) or standard care. At each clinic visit, patients will be assessed independently by both an intensivist and a diabetologist who will provide screening and targeted interventions. Six months after discharge, all patients will be assessed by blinded assessors for glycated haemoglobin, peripheral neuropathy, cardiovascular autonomic neuropathy, nephropathy, quality of life, frailty, employment and healthcare utilisation. The primary outcome of this study will be the recruitment and retention at 6 months of all eligible patients. Discussion: This study will provide preliminary data about the potential effects of critical illness on chronic glucose metabolism, the prevalence of microvascular complications, and the impact on healthcare utilisation and quality of life in intensive care survivors with type 2 diabetes. If feasibility is established and point estimates are indicative of benefit, funding will be sought for a larger, multi-centre study. Trial registration: ANZCTR ACTRN12616000206426Yasmine Ali Abdelhamid, Liza Phillips, Michael Horowitz and Adam Dean

    Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from UK'37, oxygen isotopes, and foraminiferal transfer function

    Get PDF
    We present two ∼270 kyr paleo-sea surface temperature (SST) records from the Equatorial Divergence and the South Equatorial Current derived from Mg/Ca ratios in the planktic foraminifer Globigerinoides sacculifer. The present study suggests that the magnesium signature of G. sacculifer provides a seasonal SST estimate from the upper ∼50 m of the water column generated during upwelling in austral low-latitude fall/winter. Common to both down-core records is a glacial-interglacial amplitude of ∼3°–3.5°C for the last climatic changes and lower Holocene and glacial oxygen isotope stage 2 temperatures compared with interglacial stage 5.5 and glacial stage 6 temperatures, respectively. The comparison to published SST estimates from alkenones, oxygen isotopes, and foraminiferal transfer function from the same core material pinpoints discrepancies and conformities between methods

    Mild hypoglycemia is strongly associated with increased intensive care unit length of stay

    Get PDF
    Background: Hypoglycemia is associated with increased mortality in critically ill patients. The impact of hypoglycemia on resource utilization has not been investigated. The objective of this investigation was to evaluate the association of hypoglycemia, defined as a blood glucose concentration (BG) <70 mg/dL, and intensive care unit (ICU) length of stay (LOS) in three different cohorts of critically ill patients. Methods: This is a retrospective investigation of prospectively collected data, including patients from two large observational cohorts: 3,263 patients admitted to Stamford Hospital (ST) and 2,063 patients admitted to three institutions in The Netherlands (NL) as well as 914 patients from the GLUCONTROL trial (GL), a multicenter prospective randomized controlled trial of intensive insulin therapy. Results: Patients with hypoglycemia were more likely to be diabetic, had higher APACHE II scores, and higher mortality than did patients without hypoglycemia. Patients with hypoglycemia had longer ICU LOS (median [interquartile range]) in ST (3.0 [1.4-7.1] vs. 1.2 [0.8-2.3] days, P <0.0001), NL (5.2 [2.6-10.3] vs. 2.0 [1.3-3.2] days, P <0.0001), and GL (9 [5-17] vs. 5 [3-9] days, P <0.0001). For the entire cohort of 6,240 patients ICU LOS was 1.8 (1.03.3) days for those without hypoglycemia and 3.0 (1.5-6.7) days for those with a single episode of hypoglycemia (P <0.0001). This was a consistent finding even when patients were stratified by severity of illness or survivor status. There was a strong positive correlation between the number of episodes of hypoglycemia and ICU LOS among all three cohorts. Conclusions: This multicenter international investigation demonstrated that hypoglycemia was consistently associated with significantly higher ICU LOS in heterogeneous cohorts of critically ill patients, independently of severity of illness and survivor status. More effective methods to prevent hypoglycemia in these patients may positively impact their cost of car

    Impact of the insulin and glucose content of the postoperative fluid on the outcome after pediatric cardiac surgery

    Get PDF
    INTRODUCTION: The aim of this study was to investigate the role of the insulin and glucose content of the maintenance fluid in influencing the outcomes of pediatric patients undergoing heart surgery. METHODS: A total of 2063 consecutive pediatric patients undergoing cardiac surgery were screened between 2003 and 2008. A dextrose and an insulin propensity-matched group were constructed. In the dextrose model, 5% and 10% dextrose maintenance infusions were compared below 20 kg of weight. RESULTS: A total of 171 and 298 pairs of patients were matched in the insulin and glucose model, respectively. Mortality was lower in the insulin group (12.9% vs. 7%, p = 0.049). The insulin group had longer intensive care unit (ICU) stay [days, 10.9 (5.8–18.4) vs. 13.7 (8.2–21), p = 0.003], hospital stay [days, 19.8 (13.6–26.6) vs. 22.7 (17.6–29.7), p < 0.01], duration of mechanical ventilation [hours, 67 (19–140) vs. 107 (45–176), p = 0.006], and the incidence of severe infections (18.1% vs. 28.7%, p = 0.01) and dialysis (11.7% vs. 24%, p = 0.001) was higher. In the dextrose model, the incidence of pulmonary complications (13.09% vs. 22.5%, p < 0.01), low cardiac output (17.11% vs. 30.9%, p < 0.01), and severe infections (10.07% vs. 20.5%, p < 0.01) was higher, and the duration of the hospital stay [days, 16.4 (13.1–21.6) vs. 18.1 (13.8–24.6), p < 0.01] was longer in the 10% dextrose group. CONCLUSIONS: Insulin treatment appeared to decrease mortality, and lower glucose content was associated with lower occurrence of adverse events
    corecore