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1. INTRODUCTION 

“Under  the stimulus of aridity, wind 
scour becomes an erosive agent more 
constant  than  the rain,  more  potent 
than  streams,  and  more  persistent than 
the sea”. 

So wrote A.K. Lobeck  (1939)  in his intro- 
ductory  textbook on geomorphology.  On 
Earth, aeolian processes are  particularly 
important in hot and cold deserts,  along  many 
coastlines, and in glacial outwash plains. 
Mars experiences frequent  dust  storms  and 
lacks the  inhibiting  effects  of liquid water 
and  vegetation.  Thus, aeolian processes play 
an important role in the geological evolution 
of the surfaces of both  Earth  and Mars. 

The objective of  our investigation was 
to  determine  rates of wind abrasion for  a 
wide range of conditions on Earth  and Mars. 
The  study,  however, was restricted to  con- 
siderations  of rock abrasion  and  does  not 
include  deflation  or  the erosion of land- 
forms. 

In order  to  determine  rates  of aeolian 
abrasion,  knowledge  of  three  factors is 
required (Fig. 1):  (a) wind  characteristics, 
(b)  particle  characteristics,  and  (c)  target 
characteristics. Wind characteristics  include 
wind  strengths,  durations,  and  directions. 
Particle Characteristics include  particle size, 
shape,  and  composition  and  the velocities 
and  trajectories of windblown grains; the 
latter  two  are  functions  of  freestream wind 
speeds and  heights  above  the  ground.  Target 
characteristics  include  the  rock  shape  and  a 
measure  of the  resistance  of  the  rock to 
abrasion,  termed  the susceptibility to abra- 
sion. The  rate  of  abrasion  may  then be 
calculated as 

where Sa is the  susceptibility  to  abrasion, 
q is particle  flux,  and  f is wind  frequency. 

Although  many previous studies  have 
addressed wind  abrasion,  most analyses 
have lacked various critical elements  and  are 
therefore  difficult to use  in determining 
rates  of wind abrasion.  For  example, engi- 
neering studies  of abrasion are generally well 
documented  and  quantitative in the  approach, 
but  do  not involve geological materials  such as 
rocks. On the  other  hand,  studies of  wind- 
abraded  rocks - ventifacts - in the  natural 
field environment generally lack  sufficient 
wind  frequency  data  and  particle flux infor- 
mation to  quantify  the results. 

Figure 1. Diagram showing the three principal 
parameters involved in determining rates of aeolian 
abrasion: ( I )  wind factors, including  wind velocity, 
duration and direction; (2)  particle characteristics, 
including sizes, velocities, and fluxes as functions 
of wind speed and  height above the ground, and 
(3) a measure of the resistance to abrasion of various 
rocks, termed the susceptibility to abrasion (fiom 
Greeley et aL, 1982). 
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TABLE 1. Nomenclature 

am 
A 

CD 

CL 
D 

DH 
DP 
E 

f 

g 

G O  

H 

KE 

L 

LF 

mP 

AP 

Pa 

M 

9 

Q 
Sa 
t 

U 

maximum  impact  contact  radius 

particle  cross-sectional  area 

coefficient  of drag 

coefficient  of  lift 

drag force 

mean crack diameter 

particle  diameter 

subscript  denoting  Earth 

wind frequency 

acceleration  due to gravity 

number of saltating grains landing  in  a  unit 
area per  unit  time 

maximum  height above surface  of 
saltation  trajectory 

kinetic  energy 

saltation  path  length 

lift  force 

particle mass 

subscript  denoting Mars 

pressure difference 

atmospheric  pressure 

saltation area flux  gm/cm2 *sec 

saltation  lane  flux  gm/cm*sec 

susceptibility to abrasion 

time 

wind speed 

initial  particle speed 

final  particle  speed 

wind  friction  speed 

threshold wind friction speed 

freestream  wind speed 

wind speed 

particle speed 

relative speed between  particle and wind 

initial  particle  upward  velocity 

average initial  particle  upward  velocity 

final  particle  downward  velocity 

velocity in x-direction 

acceleration in x-direction 

velocity  in  y-direction 

acceleration in y-direction 

height  above  surface 

surface  roughness 

angle between  saltation  trajectory  and 
horizontal  surface  at  impact 

angle subtended by crack ‘horns’ (Fig. 23) 

average saltation  path  length 

density of atmosphere 

density  of  particle 

total surface  shear  stress 

surface  shear  due to particle  impact 

surface wind shear maximum value (at 
threshold) 

surface wind shear 

constants 



In  this  study, we have attempted to gain 
sufficient  information  on the characteristics 
of  windblown  particles,  wind  frequencies, 
and  material  properties appropriate  for esti- 
mating  rates of wind  abrasion on  Earth  and 
Mars. 

1.1 THE MARTIAN DILEMMA 

Surface  markings  have  been observed tele- 
scopically on Mars for several hundred years. 
One of the earliest  observations that some 
markings varied seasonally was made  in  1884 
by  the  French  astronomer E. Trouvelot 
who  attributed  the variations to seasonal 
changes of  vegetation (Veverka and Sagan, 
1974).  Speculations  that the markings were 
related to vegetation,  water, or even martian 
civilizations persisted well into  the  twentieth 
century.  None of these  speculations  has  been 
shown to be valid. The first  consideration  of 
the markings  being  related to aeolian pro- 
cesses  was apparently  made  by Dean 
McLaughlin (1954),  who published  a series of 
papers on potential  martian wind activity, 
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but  it remained for Sagan and Pollack (1969) 
to first  fully  propose  this  idea. 

In 1971  the Mariner 9 orbiter  and  the 
Soviet spacecraft Mars 2 and 3 arrived at Mars 
during  a  major global dust  storm  and verified 
the predictions  of aeolian activity. In addi- 
tion to providing information on  the dyna- 
mics of dust  clouds, the Mariner 9 cameras 
revealed abundant  surface  features  attributed 
to aeolian processes (McCauley, 1973). 
Yardangs, dune fields, and  various  deflation 
features were identified,  along  with  bright  and 
dark  surface patterns  that changed their size, 
shape,  and  position  during the -1 1 month 
mission (Sagan et al.,  1972).  These  patterns 
(Fig. 2) were correctly  interpreted as repre- 
senting aeolian erosion and deposition. It 
was concluded  from Mariner 9 that  the sea- 
sonal  variations in surface markings were the 
consequence of major  dust  storms. 

Ultraviolet and  infrared  spectrometers on 
board Mariner 9 also provided information  on 
the atmosphere,  including chemical composi- 
tion,  temperature, and  density.  The  atmo- 
sphere was found to  be composed  predomi- 

Figure 2. Mars  is subject to  frequent wind stonns which  cause  changes on the surface,  as shown by the variable 
features in these Viking orbiter images.  Variable features are defined (Sagan et al., 1972) as  surface  markings that 
change their size, shape andlor appearance, such  as the dark streaks associated with craters visible here  in the 
Daedalia  region on Mars (30's. 118'W). In (a) streaks record winds fiom the  upper  left (VO frame 56A41); (b )  
shows same area for another season  in which streaks  have two prominent orientations (VO frame 603A08) (from 
momas and Veverka. 1979). 
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nantly of carbon  dioxide  with a  density  very 
low  compared to Earth.  In  this  low  atmo- 
spheric  density,  threshold  wind  speeds  are 
more  than  an  order of  magnitude  higher on 
Mars than  on  Earth (Fig. 3). Because of 
these  high  winds, it was reasoned that wind- 
blown  particles  would  also  travel much  faster 
on Mars than  on  Earth  and would  be  very 
effective  agents of abrasion,  on  a  per  impact 
basis. This  consideration,  coupled  with  the 
frequent  dust  storms, led to predictions  of 
extremely high  rates of aeolian  erosion 
(Sagan, 1973;  Henry,  1975). 

A-simple  qualitative  experiment was run 
in  our wind tunnel (Greeley et al., 1981)  to 
compare wind erosion on  Earth  and Mars 
(Fig. 4). In  the  Earth case,  a small front- 
surface  mirror was positioned  downwind  from 
a patch of  sand.  The  tunnel wind velocity 
was increased to achieve particle  threshold 
speed and was maintained  until all of the sand 
was blown  away. The  experiment was dupli- 
cated  with a  fresh mirror in a  simulated  mar- 
tian  atmospheric  environment of about 7 mb 
pressure. Again, the wind  velocity was just 
above  threshold  speed, but because of the  low 
atmospheric  density,  the  threshold  speed was 

10 100 1000 10,000 
PARTICLE DIAMETER D,, pm 

Figure 3. Threshold  curves for Earth  and  Mars  show- 
ing  threshold piction speeds  required for particles of 
different sizes;  about a factor of IO higher  speeds  are 
required on Mars than on Earth  because of the lower 
density  atmosphere on Mars. The  particle  size most 
easi& moved  (lowest  friction speed) is about  80 pm 
on Earth  and  about 100 P on Mars (after Iversen 
et al., 19 76; and  Greeley et al., 1980). 

Figure 4. Qualitative  comparison of aeolian  abrasion 
on Mars (a) and  Earth (b); mirrors  were  placed  in a 
wind  tunnel  and abraded by windblown  particles of 
quartz;  in  both  cases, the wind  speed  was just above 
threshold, but because of the low  atmospheric  den- 
sify on Mars, the wind  speed is greater  than on Earth 
to accomplish the same  particle  movement.  The 
mirror  in the martian  case (a)  is more  severelyabraded 
than the Earth  case (b), primarily from the more 
energetic  impacts  resulting from  the higher  velocity. 
Area  shown  in both cases  is about 500 pn by 7 5 0 ~ .  

about  16  times  higher  than in the  Earth case. 
Both  mirrors  were  then  examined  microscopi- 
cally to assess the relative  damage. The mir- 
ror  that was abraded  in  the  martian environ- 
ment was much  more severely damaged than 
the  one  abraded  in  the  Earth  environment, a 
result  of  the  greater  kinetic energies of the 
windblown  sand grains on Mars. Thus,  at 



least  qualitatively, higher rates  of wind abra- 
sion  might  be  expected on Mars  if aeolian 
materials  and wind frequencies of threshold 
strength  are  comparable to Earth. 

The Viking mission to Mars (1976-1981) 
returned  additional evidence of  extensive 
aeolian activity,  including images of a  sand 
sea equal  in size to  the largest erg on  Earth 
(Tsoar et al., 1979) and views of the  martian 
surface  (Fig. 5) showing  drifts  of  aeolian 
sediments  (Mutch et al., 1976). However, the 
Viking results have also caused  a reassessment 
of aeolian abrasion  on Mars (Williams, 198 1 ; 
Greeley et al., 1982).  The  pictures  returned 
from the Viking landers  show  numerous 
surface  rocks, none showing  extensive aeolian 
modification. Viking Orbiter  pictures reveal 
surfaces that have abundant small (-10 m) 
impact  craters, the presence of which indi- 
cates  surface ages that are millions or even 
hundreds of millions of  years,  but have been 
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little modified  by  erosion or  deposition of 
any  type (Arvidson et al., 1979). If the wind 
erosion  rates  predicted  prior to the Viking 
mission were correct,  then  these surface  rocks 
and  craters  should  have  been  obliterated  long 
ago. Thus, there is a  conflict  between the 
predicted high rate of aeolian abrasion on 
Mars and the  apparent  constraints posed by 
the Viking results. 

1.2 APPROACH 

Ideally, all of the parameters involved in wind 
erosion on  Earth and Mars would be observed 
and measured in situ. However, even if a field 
experiment were designed to  obtain  complete 
wind and  particle  flux data,  it would be very 
difficult to separate  the  effects of the wind 
from other erosive agents  such as water. Field 
measurements  on Mars would be even more 
difficult  and  must  await  a future mission with 
an appropriately designed experiment. 

Figure 5. The  surface of Mars  as viewed from Viking  Lander 1 in the Chlyse Planitia  region,  showing  a 2 m boulder, 
nick-named ‘Big Joe, ’ numerous  smaller rocks, and light-toned drifts of material interpreted to be aeolian deposits 
modified by wind erosion. 
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The  approach  in  this investigation was to 
use results  from laboratory simulations, 
supplemented  by field experiments  and  theo- 
retical  considerations,  in  order to  derive 
empirical results and calculated values for the 
factors  required  in  estimating  aeolian  abrasion 
rates.  Laboratory  experiments have the advan- 
tage that conditions can be  controlled  and the 
parameters,  such as particle  velocity, can be 
isolated and  studied  separately.  Furthermore, 
the  atmospheric  environment can be simu- 
lated to derive data  appropriate  for Mars. 

1.3 ORGANIZATION 

We present our results  in six sections.  The 
introduction is followed by a  section  de- 
scribing the rocks,  materials,  and  windblown 
particles used in  our  experiments and giving 
the rationale for their  selection. The  next 
three  sections  present  results on  the dynamics 
of windblown  particles,  susceptibilities to 
abrasion  of the  test materials,  and wind fre- 
quency  data.  The last  section gives estimates 
of aeolian  abrasion  rates on  Earth and Mars 
and discusses the results. 



2. EXPERIMENTAL  MATERIALS AND 
RATIONALE  FOR  THEIR  SELECTION 

In  this  section we discuss the rocks  and other 
materials used in  our  experiments to deter- 
mine  susceptibilities to abrasion appropriate 
for geological studies on  Earth and Mars. We 
also consider the  common sources  of wind- 
blown  particles  and  describe  their  character- 
istics in  terms  of  aeolian  abrasion. 

2.1 TARGET  MATERIALS 

Eight materials  (Table 2) were selected for 
abrasion  experiments to represent  a wide 
range of  potential  targets  on  Earth and 
Mars. The materials selected have a  suffi- 
ciently wide range of textures  and  compo- 
sitions to represent  most  rock  types on 
Earth.  Although  there is relatively little 
information  on  martian  rock  types,  the Sam- 
ples within the  suite selected  are  probably 
appropriate  for Mars. Data  from the Viking 
lander  inorganic  chemistry  experiments 
(Toulmin et al., 1977) suggest mafic to 
ultra-mafic  compositions,  probably involving 
basaltic  rocks  and  their  weathering products 
such as various montmorillonitic clays. Spec- 
tral  data  from  remote sensing also suggest 
that large parts of the martian  surface involve 
mafic  and  ultra-mafic  materials (Singer et  al., 
1979). These data  on  the  composition,  com- 
bined  with  photogeological  mapping, suggest 
that  more  than half of the surface of Mars  is 
of volcanic origin (Greeley and  Spudis, 1981) 
and  provide the basis for selecting  a large 
suite  of  volcanic  rocks  for the abrasion  tests. 

In  addition to volcanic materials,  sub- 
stantial  parts of Mars also  appear to be 
mantled  with  sediments  (Scott  and Cam, 
1978) which appear to range in thickness 
from less than 1  m to perhaps  hundreds of 
meters.  The degree of  induration appears to 

be variable, including very friable  duricrust 
sediments observed at  the Viking landing 
sites  and  thick,  apparently highly indurated 
deposits observed in  the walls of the ‘Grand 
Canyon’ of Mars, Vallis Marineris (Cam, 
198 1). Possible origins of the various man- 
tling deposits  include  windblown  sediments, 
fluvial deposits, glacial deposits,  and  others. 
Thus,  there  appear to be fine-grained to  glassy 
volcanic rocks on Mars, plus fine-grained 
pyroclastic  materials  and possible sedimentary 
clastic deposits ranging from breccias (gener- 
ated  partly  from  impact  cratering)  and  con- 
glomerates to clays. 

2.2 WINDBLOWN  PARTICLES 

Most wind-transported  particles on  Earth 
range in size from “micrometers (‘dust’) to 
several millimeters in  diameter (Bagnold, 
1941). Given the similar shape  in  the thres- 
hold curve (Fig. 3) it  is likely that windblown 
particles  on Mars would be of comparable 
size. Furthermore,  most  rock abrasion on 
Earth is apparently  accomplished  by sand-size 
(-60 to 2000 pm in  diameter) grains trans- 
ported in saltation,  although  finer  material 
(Whitney and  Dietrich, 1973)  and perhaps 
even wind alone can be responsible for 
shaping  ventifacts  (Whitney, 1979). Sand-size 
particles  result  from  primary  sources  such as 
volcanism and  from various processes in- 
cluding  weathering  and  fragmentation  from 
impact  cratering  (Pettijohn et al., 1972). On 
Earth,  most sand is quartz derived from  the 
weathering of granite. Moreover, most aeolian 
sand  has  gone  through  some part  of  the hy- 
drologic  cycle,  such as beach  sand that is 
transported  by  the wind to form coastal 
dunes, or windblown  desert  sands derived 



TABLE 2. Materials  used in determining susceptibilities 
.~ 

MATERIALS SOURCE DESCRIPTION 
.__ 

Basalt 

Obsidian 

Tuff, welded 

Tuff 

Rhyolite 

Granite 

Brick 

Amboy lava flow,  California  Typical basalt in  thin section. Contains 
euhedral plagioclase crystals that show  some 
zoning.  Crystal size  is 0.5 - 1  mm. Glassy 
groundmass  with  some  alteration. 

Lookout  Mountain,  Long 
Valley Caldera, Mono Lake, 
California 

Bishop Tuff, Owens  River 
Gorge near Bishop, 
California 

In  thin section  the  obsidian is almost  totally 
glass. Contains  some  very small crystals and 
shows  flow texture. 

The  matrix  shows  both  flow  and  compaction 
features. Contains  elongated  and  somewhat 
devitrified pumice  fragments. Has  glass shards 
in  matrix.  Euhedral  sanidine crystals of 1.5 - 2 
mm  diameter.  Contains  a small amount of 
quartz. 

Bishop Tuff, Owens  River Contains  some large pumice  fragments.  Matrix 
Gorge near Bishop, has glass shards but  no evidence  of  flow or 
California compaction.  Euhedral  sanidine crystals of 

1.5 - 2 mm  diameter. 

San  Carlos  Indian  Reservation,  Granular texture with all crystals smaller than 
Arizona 1 mm.  Contains  microcline  phenocrysts  with  a 

few quartz crystals and  some  accessory  biotite 
and  garnet. 

Unknown 

Common  red clay 

Coarse  grained  (up to 5 mm) granite. Primarily 
quartz  and  microcline,  with  some plagioclase 
and thin  biotite crystals and  accessory zircon. 

In  hand  specimen, the brick is primarily red 
clay with  some  quartz  and  feldspar crystals, 
ranging  in  size up  to approximately 2 mm. 

Hydrocal  Common  gypsum  cement In  hand  specimen, the  hydrocal is uniform 

geneities, apart  from  an  occasional vesicle. 
building  material  chalky  mass,  with  no visible crystals or  inhomo- 

~~ - .   - .  . .~.... . . . . ~. -~ ". ~ . . 

from alluvium. Quartz is the  common  com-  on  Earth,  quartz was selected as one of the 
position of aeolian sands,  apparently because primary  agents of abrasion in  our experi- 
it  is chemically  stable  and  mechanically resis- ments. 
tant  and  therefore is able to sustain  repeated 
cycles of weathering  and  transportation.  Granite  appears to be  absent or rare  on 
Because it is dominant  in aeolian processes Mars and  consequently  there  may  be very 
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little  quartz sand  present (Smalley and be an important process on Mars (Malin, 
Krinsley,  1979). Furthermore,  under  the pre- 1974). 
sent  martian  climate,  and  with  the  apparent 
lack of active volcanism and  tectonism 
(Cam, 1981) and the present-day low  rate of 
impact cratering, the generation of sand-size 
particles on Mars is probably  suppressed in 
comparison to Earth. Nevertheless, the pre- 
sence of sand  dunes  (Cutts, 1973;  Cutts  and 
Smith,  1973),  some of which  may be active 
(Tsoar et al., 1979), and other aeolian fea- 
tures (Sagan, 1973; Binder et al., 1977) 
suggest the presence of both sand-size par- 
ticles and winds capable of transporting  them. 
Remote sensing data  for areas of aeolian 
activity on Mars and analyses of thermal 
inertia  measurements also suggest the pre- 
sence of sand-size particles  (Peterfreund, 
198 1) as do analyses of materials at  the 
Viking Landers  (Moore  and others,  1977). 

Most martian  dunes  are very dark, in- 
cluding  those  of the large erg  in the  north 
polar  region,  and it has been suggested that 
they are  composed of basalt  particles derived 
from  nearby  volcanic  plains  (Tsoar et  al., 
1979).  Thus, sand-size grains of  basaltic  com- 
positions were used in many of our abrasion 
experiments to simulate Mars. 

Because of the high wind speeds  needed 
for sand entrainment  on Mars, it has been 
suggested that sand-size particles would be 
very short-lived; the term ‘kamikaze’ (mean- 
ing divine wind in  Japanese) grains was 
coined  by Sagan et al. (1977)  to describe 
particles that smashed against rocks  and  each 
other, forming fine-grained dust.  Estimated 
particle sizes in the martian  dust  clouds is a 
few pm and smaller  (Pollack et al., 1979b) 
and the kamikaze effect  may  be  the principal 
mechanism to produce  the  dust. In addition, 
salt  weathering,  mechanical  fracturing caused 
by the growth of salt  crystals, has been  shown 
to be important in the  production  of fine 
grains on Earth  (Goudie et al., 1979)  and  may 

Laboratory  experiments  simulating  the 
comminution  of  windblown  sand  on Mars  give 
support to  the idea of the kamikaze  effect 
(Greeley, 1979).  Experiments also show  that 
windblown  sediments  generate  electrical 
charges, a  result  confirmed  by field observa- 
tions on  Earth (Mills, 1977).  Both the magni- 
tude  of  the charge and the  polarity (positive 
or negative) appear to be  functions  of  particle 
size, composition,  impact  velocity,  and  atmo- 
spheric  density.  Furthermore,  the  experi- 
ments  showed that  the  dust generated  from 
the  breakup of the kamikaze grains clumped 
together,  forming aggregates. These aggregates 
grew to diameters  greater  than several mm 
(Greeley,  1979).  Evidently,  differences in 
electrical charges among the  dust particles 
were sufficient for aggregate formation. 
Because the electrical  effects  are  enhanced in 
the rarified martian  atmospheric  environment, 
Greeley and Leach (1 978) and  Greeley  (1 979) 
suggested that aggregates may  be an impor- 
tant  part of the aeolian regime on Mars. 

Windblown aggregates also occur  on 
Earth.  Some are generated  during volcanic 
eruptions (Krinsley et al., 1980) and appar- 
ently are bonded by electrostatic charges. 
Most aeolian aggregates, however, are asso- 
ciated  with  playa  deposits. Silt and clay playa 
deposits  are often slightly indurated  and/or 
cemented  with  various  salts.  During wind 
storms,  sedimentary  accumulations  that  are 
fragmented by dessication  are  picked up  by 
the wind,  rounded into sand-size grains and 
deposited  in  typical  sand  bedforms,  including 
dunes  (Huffman  and Price, 1949;  and  others). 

Sand-size aggregates of  fine grains may  be 
an important  part  of aeolian processes on 
Mars, and  are  known to occur on Earth.  Thus, 
aggregates were used in  some of our abrasion 
experiments  for  comparison  with results 
using crystalline quartz and  basalt  sand grains. 
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2.3 SUMMARY common  on  Earth.  Experiments involving 
Windblown  particles rock  targets.  of  a basaltic rocks  were  emphasized  for Mars,  as 
wide range were selected for study  in  our basalts appear t o  be  common  on  the Red 
experiments  to  simulate aeolian abrasion  on Planet.  Three  types of particles - quartz, 
Earth  and Mars. Potential  rock  targets  include basalt, and aggregates of  fine grains - were 
igneous and  sedimentary  rocks  which  are used as the  abrading particles. 



3. DYNAMICS OF WINDBLOWN  PARTICLES 

Of the  three  parameters  required to  determine 
the rates of wind abrasion, the  one dealing 
with the dynamical  characteristics  of wind- 
blown  particles is the most  complicated  and 
difficult to assess. For  any given wind, the 
saltation  flux  and  trajectories of windblown 
particles  vary  with  surface  roughness,  height 
above the surface,  and  atmospheric  density. 
Thus,  in  order to consider wind erosion on 
Earth  and Mars for  times  in the past when 
the climate and atmosphere  might have been 
different,  these characteristics must also be 
known  for  a range of atmospheric  densities. 

3.1 METHODOLOGY 

Our  approach was to run wind tunnel  experi- 
ments to determine as many of the particle 

characteristics as possible for  Earth  condi- 
tions,  then to repeat the  experiments  under 
simulated  martian  conditions.  Some  of the 
results for  the terrestrial cases were compared 
with  results  from field experiments  in  order 
to verify the wind tunnel simulations  and to 
provide  a basis for  extrapolation to Mars. 
Because not all conditions  for  Earth  or Mars 
could  be satisfied in laboratory  simulation, 
numerical  models were derived based on a 
combination of theory  and  experiments to 
allow calculations of flux  and  saltation  tra- 
jectories  for  a wide range of conditions. 

Wind Tunnel  Experiments 

Experiments were performed in an open- 
circuit wind tunnel (Fig. 6) using particle 

Diffuser 

Boundary. layer  probe 

Figure 6. Diagram of the Martian  Surface  Wind ntnnel (MARSWIT). MARSWITis an open-circuit, atmospheric 
boundaly layer tunnel 14 m long, with a 1.1 m2 test section. The  tunnel is housed in  an environmental chamber in 
which the atmospheric pressure can be varied from 1 bar to about 3 mb  for martian simulations; at low pressures, 
carbon dioxide is used as the atmosphere, appropriate for Mars. 

I 
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collectors to  determine  particle  flux  and 
instruments to determine  particle  velocity. 
An experimental  matrix was developed  com- 
bining atmospheric  pressure,  particle diame- 
ter,  freestream  wind  velocity,  and  height 
above the surface  (Appendix  1).  Atmospheric 
pressures of 1 bar  (Earth case)  and  an average 
of "7 mb (Mars case) were used.  Three par- 
ticle sizes were selected for analyses: 71 5 pm, 
representing  coarse  sand, 350 pm  for typical 
dune  sand,  and 92  pm,  the size most easily 
moved by  lowest  strength winds (Fig. 3). 

For  both  the  Earth and Mars experiments 
a wide range of freestream wind velocities 
was selected,  including high speeds to simu- 
late  storm  conditions  when  substantial aeolian 
abrasion  probably  occurs. Crushed and sieved 
walnut shells were used in  experiments to 
simulate Mars. Their  lower  density helps to 
offset  the differences  in gravity between 
Earth and Mars,  as discussed below.  Quartz 
sand was  used in  terrestrial  experiments. 

Particle  collectors (Fig. 7) were used to 
determine  flux as a function of height above 

ENTR 

AIR FLOW AND 
PARTICLES 

Figure 7. Diagram of particle  collector  used to deter- 
mine flux. Collector  is  made o f plexiglass;  windtunnel 
smoke  tests  were  carried out  to determine optimum 
angle for the wedge  which  would  allow  maximum 
efficiency for particle  collection  with minimum inter- 
ference to air flow. Baffle  prevents  particles from 
bouncing  back out  the  front or damaging the screen. 
Tabs on the side  enable  collectors to be  stacked. 

the surface.  Each  collector was a wedge- 
shaped  box,  open at  the upwind  end to sam- 
ple  a  cross  sectional  area  of 2.4 cm2  perpen- 
dicular to  the flow  direction.  The larger, 
downwind  end was covered with 40 pm 
mesh. A small baffle was placed  in the collec- 
tor to prevent  particles from  bouncing out of 
the  front  end  or damaging the screen. The 
design used here was developed to maximize 
the  collection  of  the particles  with  minimum 
interference  of  the  air  flow,  although no par- 
ticle  collector  is  100%  efficient. 

Particle  flux (9) as  a function of height 
above the surface was determined as the mass 
of  particles  caught per  unit area  of the collec- 
tor per  unit  time.  Although  the collectors 
could  be  stacked to  sample the entire cross 
section of the wind tunnel  from the floor to 
the ceiling, preliminary  tests  showed  erratic 
particle  distribution  at  heights  above 65 cm, 
evidently as a  result of particles  bouncing 
from  the ceiling. Because of this  behavior 
and  because very few particles  occur at these 
heights,  collection  in  most  experiments was 
made  from the  surface to 65 cm above the 
surface.  Total  particle  flux, Q, was deter- 
mined  by  summing the masses caught  in  the 
individual  collectors. 

Particle  speed was determined  with  a 
velocimeter (Schmidt,  1977).  The velocimeter 
produces  a  light beam perpendicular to  the 
wind stream,  focused on  two light-sensitive 
semiconductors that  detect  the  shadow  of  any 
particle as it crosses two  separate  portions of 
the light beam (Fig. 8). Parallel windows  limit 
the field of view of the light receivers; an elec- 
tronic  unit  connects  the  two  phototransistors 
such  that a  particle passing through  the light 
beam produces  a positive voltage pulse as it 
shadows the first  window,  and  a negative 
pulse at  the  second window. To determine 
particle  speed the time  interval  between posi- 
tive and negative pulses is measured  with  an 
oscilloscope. This  time  interval,  in  conjunc- 
tion  with  the  known  separation of the sensor 
windows,  enables the particle  velocity to  be 
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Figure 8. Schematic  diagram of particle  velocimeter; 
device  consists of a  light  source  and two photo- 
transistors;  as a particle  passes  through the beam, the 
upwind  phototransister  registers  a  positive  voltage, 
then the second (downwind) phototransister  registers 
a  negative  voltage; the difference  between the two 
signals yields time (hence velocity); the amplitude is 
a function of grain  size (from Greeley et al., I982). 

determined.  About  two  hundred  data  points 
were obtained  for each run. To investigate 
rates  of  rock  abrasion  corresponding to 
various heights above the  surface, particle 
velocities were measured at various heights 
above the wind tunnel  floor. 

High speed 16 mm motion pictures were 
taken  for  some of the Earth-case wind tunnel 
experiments to determine  saltation  trajec- 
tories  and to validate the velocities deter- 
mined  with the velocimeter  (Greeley et al., 
1982,  1983).  The camera was positioned per- 
pendicular to  the particle  flow  and  recorded 
the saltation  cloud at 2,000 to 10,000 frames 
per  second.  The films were studied  with  a 
Vanguard Motion  Analyzer using film timing 
marks at 0.00 1 -second intervals  recorded 
during the experiment. 

Field Experiment 

A field experiment was conducted to provide 
a  calibration of the wind tunnel results under 
natural aeolian conditions using the same 
techniques  and  instruments as employed  in 
the  laboratory.  The field site was located at 

Waddell Creek State Beach, about  100 km 
south of San Francisco. The beach  consists of 
wind-transported  marine  sands  and was readi- 
ly accessible to equipment  required  for the 
experiment.  In November 1981, a Hycam 
16 mm motion  picture  camera was installed 
to record  saltating  particles  at  framing  rates 
up to 8000 frames  per  second.  Concurrent 
measurements of wind velocity were made 
1  m above the surface.  Particle  collectors 
were placed in  the wind  stream to determine 
particle  flux. Seven successful experiments 
were conducted  for wind speeds ranging from 
about 4.5 to 7.0 m/sec. 

3.2 PARTICLE  VELOCITY 

Most windblown  particles  near the ground  are 
transported in saltation.  The  path  that  a sal- 
tating grain follows is called the  saltation 
trajectory (Fig. 9).  The velocity of the grain 
generally increases throughout  its  trajectory, 
although  by the time it has  reached  maximum 
height above the ground,  most grains will have 
achieved about 50% of their  maximum veloc- 
ity.  For  most of their  trajectory,  saltating 
particles travel at  some  fraction of the free- 
stream wind speed. Because meteorological 
data provide only wind speeds (not particle 
velocities) it is necessary to know  particle 

WIND PROFILE 1 

WIND- 
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Figure 9. Diagram  showing two typical  saltation 
trajectories;  solid  path  corresponds to low wind  speed 
(profile I )  and  has low ( H I )  and  short  path ( L I )  in 
comparison to path of particle  driven by high  wind 
speed (profile 2). 
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velocity as a function of wind speed in  order 
to calculate  rates  of  abrasion. Furthermore, 
at  any given instant  and at  any given place 
within the saltation  cloud  there is a  complex 
spectrum  of  particle  paths  and speeds. Thus, 
it is also  necessary to know  the velocity dis- 
tributions  of particles as functions of grain 
size, wind speeds,  and  heights above the 
ground. 

Figure 10 shows  typical  velocity  distri- 
bution within  saltation  clouds in terrestrial 
simulations,  measured at a single height above 
the floor of the wind tunnel. Velocities are 
given in m/s  and as percentages of the free- 
stream wind velocity. In general, particles 
travelling at greater  heights  are also travelling 
at higher speeds.  Evidently,  this is a  reflection 
of the increase  in wind speed  with  height 

3 8 0 p m  OUAl lTZ  

l 0 . l c m  HElOHT 

P A R T I C L E   V E L O C I T Y  ( m l m o c )  

I J 

0 2 0  4 0  n o  8 0  100 1 2 0  

X OF FREESTREAM  WIND  SPEED 

Figure 10.  Dism’bution of particle  velocities  at a 
height of  16.1 cm above the surface for 350 pm 
diameter  quartz  grains  subjected to a freestream wind 
speed of -10.22 mls in a simulation of Earth (u* = 
0.6 m/s). The  velocity  distribution is typical  and  can 
be  expressed as a mean  value with an  associated one 
standard  deviation  range about the mean, as shown. 
Later  figures  will  present  only  the  mean  and range 
(from Greeley  et  al.,  1983). 

MARS  CASE 
3 5 0 p m  SHELL  PARTICLES 

u m z 6 5 r n / a  

5  10  15 2 0  2 5  3 0  3 5  
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Figure 11.  Particle  velocities for four different 
heights  above the surface for 350 m walnut  shell 
particles  subjected to a freestream  wind  speed of 65 
mls (u, = 3.4 m/s) in a low  atmospheric  pressure 
(6.6 mb) to simulate the martian  environment (from 
Greeley et al., 1983). 

above the  ground,  through  the  turbulent 
boundary  layer. In addition, because particles 
at greater  heights tend to have longer  saltation 
trajectories,  there is a  longer  interval of time 
for  them to be accelerated by the wind.  Note 
also that  some grains travel at velocities ex- 
ceeding the wind speed, which probably re- 
sults  from  elastic  rebound of grains in salta- 
tion. Figure 11 shows similar results  obtained 
in  experiments  simulating Mars. 

Figure 12 compares  velocity data  for 
particles on  Earth with  those of Mars under 
similar  dynamic  conditions for  both low and 
high wind speeds. ‘Low’ refers to speeds 
about 25% greater  than  threshold; ‘high’ 
refers to storm  conditions,  where winds are 
about twice  threshold. In all cases, particles 
travel at a  higher  percentage of  the freestream 
wind speed  on Earth  than  on Mars. This 
suggests a  more  efficient  coupling  of the 
particles  with the wind in the denser  terres- 
trial  atmosphere. Because wind speeds  are 
about an order  of  magnitude higher on Mars 
for  particle motion,  the grains would have to 
be  accelerated to a  much  greater  speed on 
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in the wind flow when the wind speed is 
below threshold (White et al., 1976). How- 
ever, when minimum  threshold  speeds (u,,) 
are  reached, the optimum-size  particles 
(Fig. 3)  begin to saltate, which causes the 
viscous sublayer to degenerate  and  form  a 

! EARTH 

I MARS fully turbulent  boundary  layer. 

Our  computational  model  of  saltation 
trajectories is based on the equations  of mo- 
tion of a single particle (White and  Schulz, 
1977; Fig. 13): 

0 5 10  15 20 25 30 
HElGHTABOVESURFACE,cm 

Figure 12. Average velocity of particles 350 and 92 
pm in diameter as a function of height above surface 
at I O 3  mb pressure (Earth case) and 6.5  mb pressure 
(Mars case); both cases  are run at freestream wind 
speeds just above threshold (‘low’ u,) and for storm 
conditions (‘high’ u~). 

Mars in comparison to Earth in order to  reach 
the same  percentage of the freestream. Even 
though  the  saltation  trajectory is longer  on 
Mars, they  may  not be  in flight long  enough 
for an acceleration  comparable to Earth. 
However, the lower  percentage  could also 
result  partly from experimental  error.  The 
saltation  path  length  on Mars  is longer  than 
on Earth (discussed below)  and in the wind 
tunnel  the  saltation cloud  in  martian simula- 
tions  may  not become  fully developed be- 
cause of  the limited wind tunnel  length. 

3.3 SALTATION MODEL 

A computational  model of particle  saltation 
was developed in order to determine velocities 
and  trajectories  of  particles for a  wider range 
of  conditions  than  could  be  simulated  in  the 
laboratory. In the  model, a  one-dimensional 
flow regime is assumed for calculations of the 
trajectories. The velocity in  the vertical (y) 
direction is zero  and  the velocity, u, in the ’ 

flux  (x)  direction is a function  of height 
above the surface. A viscous sublayer  develops 

where m is the particle mass, u is the wind 
velocity, (x, 9 )  are the particle’s horizontal 
and vertical velocity, (x, y )  are  the particle’s 
horizontal  and vertical acceleration,  and vr is 
the velocity of the particle relative to the 
velocity of the wind and is equal to 
[ (2- u)* + 9’ 3 s. Aerodynamic  force on a 
particle is proportional to its cross-sectional 
area, A, times the difference in pressure, Ap, 
across the particle. Bernoulli’s equation  states 

P .  

Y 

Figure 13. Force diagram for a saltating particle. 
L denotes lift  force; D, drag force; up is the instanta- 
neous particle Velocity and  vr is the  veiocity of the 
particie relative to the wind velocity (modified fiom 
White  and Schulz, I 9  77). 

I 
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where pa is the  atmospheric  density  and v is 
the air  velocity.  Hence 

L a 1/2 A  pa vr2 

D a 1/2 A  pa vr2 (6) 

Assuming the particles are spherical  and of 
uniform  density, we can write 

L =  1/8 C L ~ ~  T Dp2 vr2 

D = 1/8 CD pa 7~ Dp2 vr2 

where  CL is the coefficient of lift, CD is the 
coefficient of drag,  and Dp is the particle 
diameter. We can now  substitute  (7) and (8) 
into  (2) and (3) and rearrange 

The  drag  coefficient of a  sphere is strong- 
ly  dependent  upon  the  Reynold's  number. 
The empirical formulas of Morsi and Alexan- 
der  (1972) are used for  its  determination  in 
our numerical  calculations. The initial  condi- 
tions  are  the same as those used by White 
et al. (1976),  in which the particle is at rest 
on  the surface and, as the wind speed is 
increased above threshold,  particles begin to 
move. For calculations  in the  martian  atmo- 
sphere it is necessary to include  the effects 
of slip flow caused by  the low  density  atmo- 
sphere,  although the slip flow  factor  only 
becomes  significant for  the smaller-size 
particles  in the calculations (White, 1979). 

Figure 14 displays typical computed parti- 
cle trajectories for  Earth  and Mars when  lift 
forces  due to the Magnus effect  (lift  force 

produced  by  spin)  are  taken into  account 
(White and  Schulz,  1977).  The  percentage 
values at  various  positions  along  the  trajectory 
are the  ratio  of particle  speed to  the free- 
stream  wind  speed.  In  general, the percentage 
of freestream wind speed that a  particle 
reaches is about  the same for all calculated 
particles at similar positions in  their  trajec- 
tories. Particles accelerate to nearly half of 
the freestream wind speed  in the initial  lifting 
phase of their  trajectories, which corresponds 
to about  1/4  of  their  path  length, L. Note, 
however, that particles more nearly  approach 
freestream wind speed  on Earth  than  they  do 
on Mars, similar to  the results  determined 
experimentally. 

3.4 PARTICLE FLUX 

Numerous  investigators have analyzed mass 
transport,  both  from  experimental and theo- 
retical  approaches. Bagnold (1 94 1 ), for 
example,  carried out experiments to deter- 
mine Q and  then considered the flux in terms 
of momentum loss of the air due  to sand in 
saltation.  Sharp (1 964) collected grains 
within  saltation  clouds  at various heights over 
long  periods of time,  then  determined  the 
total masses and  particle size distributions; 
however,  concurrent wind data are not 
available. Thus,  in  order to obtain  data 
appropriate  for  both  Earth and Mars, experi- 
ments were carried out and  a  numerical 
model was developed. 

In our  experiments,  particles were placed 
in  the wind tunnel  upwind of an array of 
collectors  (Fig.  15).  The  collectors have a 
remotely-operated  trap  door  that can be 
opened  and closed to sample the  saltation 
cloud for a  discrete  interval of time.  The 
wind speed was increased and  held  steady to  
produce  a  fully developed saltation  cloud. 
The  trap  door was then  opened to sample 
the  saltating particles. At the conclusion of 
the  run, particle masses were determined  for 
each  collector to obtain values of q for each 
height. 



17 

POSITION 
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6 
7 
8 
9 
10 
1 1  
12 
13 

SALTATION  PATH  LENGTH, rn 

EARTH  MARS 
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rnlsec 

2.6 
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7.2 
12.6 
15.4 
18.8 
22.1 
23.1 
23.5 
23.6 
23.7 
23.7 
23.5 
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10 
18 
28 
49 
60 
73 
90 
90 
91 
91 
92 
92 
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5.3 
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22.6 
37.3 
53.2 
61.8 
65.7 
67.6 
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5.3 
12.9 
22.6 
37.3 
53.2 
61.8 
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Figure 14. Gzlculated trajectory for grains  in saltation on Earth  and Mars for wind speeds about 25% above thresh- 
old, showing much longer trajectory for martian case. Positions along the trajectory show the instantaneous velocity 
(shown in both  m/s and as a percentage of freestream wind speed)  of the particle. Note that vertical  scale  is greatly 
exaggerated. 

Figure 16 shows q as a function of height 
for  92  pm grains at  three wind speeds  in the 
wind tunnel  compared to results  obtained  in 
the field experiment at  Waddell Creek where 
the average grain size was about 300 pm. 
In general,  there is an increase in flux closer 
to the  surface,  and  at  greater freestream 
velocities. 

Figure 17 shows  experimental  results 
for Mars to determine  q  for 92 pm particles 
versus height  for wind speeds  ranging  from 58 
to 123 m/sec. In  these  and  other  martian 
simulations  particles  composed  of  walnut 
shells approximately  one  third  the  density  of 
grains expected on Mars were used to com- 
pensate  partly  for  the  lower  martian gravity 
(Greeley et'al., 1977a).  Although  this  tech- 
nique is  valid for  threshold  tests  and  for 

determining  flux in terms of numbers of 
particles, the experimental  data  for flux 
mass must be adjusted  (Greeley et al., 1982). 
Thus, in Figure 18  the gravity-adjusted data 
are  shifted  upwards  by  a factor of 2.6  (the 
density  difference  between  walnut shells and 
particles  expected on Mars, such as basalt). 
As in the terrestrial cases, there is a general 
decrease in particle  flux  with  height  above the 
surface.  In  addition there is an  abrupt break 
in  the  flux  at  about 30 cm above the surface. 
This break  may  represent the  transition  from 
grains that are  transported primarily in 
saltation  near  the  surface to grains moving 
mostly  in  suspension at levels above 30 cm. 

Total mass flux, Q, was determined  by 
summing  incremental  flux, q, for  the  total 
column  sampled.  Figure 19 shows total  flux, 
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Model for Calculation of Flux 

Figure 15. View of stacked  particle  collectors (1)  
used to determine flux of saltating  grains.  Samples 
are taken  in  intervals of 2 cm  above the floor; trap 
door  device  allows  precise  timing of collection 
during filly-developed saltation  cloud.  Also  shown is 
particle  velocimeter (2) and  electrometer  probe (3) 
used to measure  electrical  current  generated  by  wind- 
blown  grains.  Air flow is from right to  left (from 
Greeley et al., 1982). 

Q, for freestream wind tunnel  speeds ranging 
from -6 to 12.0  m/s  for 92  pm  quartz 
particles,  simulating  terrestrial  conditions. 
Martian simulations  are  shown in Figure 20 
which give total  flux, Q, for freestream speeds 
ranging from  about  55 to  90  m/s  for  92  pm; 
both  experimental  and gravity adjusted  data 
are shown.  Few  particles  in suspension were 
counted. In  general,  there is an increase  in 
flux  with increasing wind velocity.  Thus, 
flux is higher on Mars than  on  Earth  for 
dynamically similar conditions (same u*/u*t), 
because of  the higher wind speeds  required 
on Mars for particle entrainment. 

An estimate of the  total  amount of surface 
material transported  by  the wind may  be 
made  by examining the physics of the pro- 
cess. The  key  parameter  in  estimating  sur- 
face-material movement  rates is the charac- 
teristic path  length of saltating  particles. 
Several investigators have developed both 
empirical  and  theoretical methods to calculate 
path lengths  (Bagnold, 1941 ; Kawamura, 
1951 ; Tsuchiya,  1969).  Tsuchiya has a 
theoretical  development based on successive 
saltating leaps. However, it is necessary to 
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10-ly MARS CASE, 92 pm S H E L L  T o  = rs  + rw 
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Figure 17. Particle flux. q, for 92 p n  particles as a 
function of height for 5 wind speeds in the martian 
wind tunnel at -6 mb atmospheric pressure. 

know  the  initial  or  maximum vertical compo- 
nent of velocity at lift-off for  the particle in 
order to calculate its  path  length. This  com- 
ponent is generally a function of the flow 
conditions.  Formulation  of  this  type,  with 
the  path length a function  of  the vertical 
velocity,  does not lend itself well to calcula- 
tions of  surface  material  movement. For  our 
application it is useful to express the  path 
length in relation to the  threshold  shear 
stress exerted on  the surface by  the wind, as 
presented by Kawamura (1 95 1 ). The surface 
shear  stress ro consists of two elements. The 
first is the ordinary wind shear, rw, caused by 
the  motion  of  the wind flow  over the surface. 
The  second  stress, rs ,  comes  from the impact 
of  particles  colliding  with the surface. 

Kawamura found  that rw increases with 
increasing wind friction  speed, u*, until 
w t  is reached,  then it remains  approximately 
constant  at a value of rt, hence, 

or 

Bagnold (1941)  and Kawamura state  that  the 
stress on  the surface caused by  the  impact  of 
saltating grains is equal to  the  momentum lost 
by  the grains: 

where Go is the  number  of grains landing  per 
unit area per  unit  time,  uf is the final grain 
speed at surface impact,  and ui  is the  initial 
grain speed at particle lift  off. 

It can be assumed (Kawamura, 1951)  that 
there is a linear  relationship  between the 
particle momentum lost occumng in the 
horizontal  and vertical directions 
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Earth  wind  tunnel  simulations compared  with flux 
predicted  by Equation 33. 

where g is a constant,  and  u  and  w  are  the 
horizontal and vertical components of the 
particle  velocity, v, respectively. 

After  the collision with  the surface a 
bouncing  particle traveling vertically with 
speed wi will  again return t o  the  surface  with 
the same speed wf = -wi on  the average. 
Hence 

Substituting (1  5) into  (14)  into (13) yields 

~ 3 = 2 [ G o W i  (1  6)  

Substituting  into (1 2) 

MARS, 92 pm PARTICLES 
-THEORETICAL 
0 EXPERIMENTAL 

EXPERIMENTAL 
GRAVITY-ADJUSTED 

0 

0 

~ 

5!? 60 70 80 90 
FREESTREAM WIND SPEED, m/sec 

I I I 1 I 
2.5 3.0  3.5  4.0  4.5 

WIND  FRICTION SPEED, mlsec 

Figure 20. Particle flux, Q, for  92 ~.un particles in 
experiments, as adjusted for Mars gravity, and com- 
pared with  flux  predicted  by Equation 33 (from 
Greeley et al.,  1982). 
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From the definition of surface 

U* 3 [ ~ o / ~ a l  I f 2  

friction  speed 

(1 8) 

where pa is the  atmospheric  density,  Equa- 
tion (1 6) can  be  rewritten as 

2 Go Wi = pa  (u*, - u,~ ' )  (19) 

From field studies of saltation,  Kawamura 
(1951)  found  that 

Go = K1 Pa (u* - U*t)  (20) 

which also agreed with  numerical  solutions 
of particle motion (White, 1979). Substi- 
tuting  (20)  into  (19) yields 

The average saltation  path  length, h, can be 
calculated  from  this  result  in the following 
manner.  From  elementary physics we know 
that  the  time  aloft  for a  particle  with  initial 
upward  velocity, wi,  is 

t = 2 Wi/g (23) 

where t is time  aloft  and g is the acceleration 
due to gravity. During time  t,  the particle 
will be moving downstream  with  an average 
velocity Ui. Applying basic physics equations 
of distance  traveled, the saltation  path  length, 
L, is 

Substituting  (23) into (24): 

Because iii 0: Wi (from 14) 

Substituting  (22) into  (26) and  collecting 
constants 

We now have the necessary information to 
calculate  a total  saltation  lane  flux, Q. If we 
consider  a  zone  with  length h, downwind  of  a 
unit  width  lane, no particle  can possibly 
land  in that  zone  without first passing over 
that lane width; also, no particle can pass 
over the lane  width and fail to land  in the 
zone. Hence 

Thus,  the  amount of material passing over the 
lane  width is equal to  the  amount  of material 
landing  on the surface per unit area  times the 
length of the zone. We can substitute (20) 
and (27)  into  (28) 

The final  form of the  theoretical  total  flux is 

On Mars, there  appear to be different 
interparticle  forces as well as effects  from 
changes in  Reynolds  number.  These changes 
will alter the saltation  characteristics  by 
affecting the threshold  friction  speed. The 
flow field around  individual  particles  (Knud- 
sen and  Reynolds  numbers  effects),  shearing 
rate within the  boundary  layer, and the 
existence of a  comparatively large (to Earth) 
viscous sublayer for  nonsaltating flow will 
cause change in  threshold values. 
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Using Equation  30, a  comparison  between 
Earth  and Mars can be  made 

where the C's are constants  of  proportional- 
ity. Assuming that  the  ratio  of  friction speed 
to threshold  friction  speed, u* /u*~,  is the 
same for  both  Earth and Mars (most areas on 
Earth are  windier than Mars): 

White (1979) has shown  experimentally 
that  under martian  conditions  substantially 
less stress is needed to move material  than 
on Earth. This  result supports  the numerical 
results that  show similar increases in  particle 
path lengths  on Mars and that  the  path  length 
is almost  directly  related to the mass flux. 
Thus, it  would be useful if Earth and Mars 
cases could be  adequately described by  a 
single universal equation. According to the 
analytical  derivation, the only  differences 
between the relations  describing the  two cases 
are the empirical constants CE and CM. 
If the  constants of proportionality CE and 
CM are the same for  both cases, this would 
indicate  that  the physics between the  two 
tests  remained  unchanged,  and would imply 
a universality to  the mass flux process. AS 
one would expect,  the process of movement 
of surface  material on Mars should  be nearly 
the same  as the process on  Earth. Hence, the 
constants of proportionality  between  the  two 
test cases should be nearly the same.  From 
the wind tunnel  data of both cases, a unitless 
empirical constant  with  a value of 2.61 was 
determined (White, 1979). 

Figure 21 displays the mass flux versus 
a  function of friction  speeds.  Here, both 
high- and low-pressure data collapse to a 

single line in support  of  the idea  of  a universal 
function describing the movement process. 
Hence, the following  equation  can be used in 
estimating mass flux  on  either  Earth  or Mars 
once the friction  speed  and  threshold  friction 
speed  are known: 

Q = 2.61 -5 (u, - u,~)(u* + u * ~ ) ?  (33) P 

g 
The  flux of material on Mars  is consis- 

tently higher than  on  Earth, if the frequen- 
cies of winds above  threshold are the same, 
in spite of the lower  martian  atmospheric 
density,  due to: a) the higher u * ~  required 
on Mars, b) the lower  martian gravity and 
c) the typically  longer  saltation path lengths 
on Mars (discussed above). From  Equation 
32  the difference in Q  between the Earth  and 
Mars may  be  expressed as 

For example,  the relationship  between the 
material  movement  on Earth and  on Mars, 
for  equal  ratios of u * / u * ~  of 1.47, would be 
QM/QE = 6, or 6 times as great on Mars for 
200  pm particles.  A  direct  estimate of flux 
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Figure 21.  Particle flux, Q, as a function of  friction 
speed  parameter;  one bar (Earth) and low  pressure 
(Mars) data  colrclpse to a single  curve  which  is the 
straight  line on the plot. Note the origin for both 
cases  are  data points, as they are  used  in  determining 
the  threshold friction speeds (from White,  1979). 
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rates  on Mars can be made  by employing the 
results  shown in Figure 21.  To  obtain a nu- 
merical value, the threshold  friction  speed 
must  be  known.  The value will vary with 
size of particles but, once known, a  direct 
estimate  of the mass flux can be made. 

3.5 SUMMARY 

In general, increases in  freestream wind speed 
result in increases in the trajectory  height  and 
path  length  for grains in  saltation, causing 

them to achieve higher velocities. This,  in 
turn, results in higher rates of mass transport. 
Because of  the higher wind speeds  required 
for threshold on Mars, both particle velocities 
and  fluxes  are higher than  on  Earth, if the 
frequency of wind above threshold is the 
same. However, particle velocities seldom  are 
greater than  about 50% of freestream  velocity 
on Mars, in  contrast to Earth where  particle 
velocities commonly  meet  and  sometime 
exceed  freestream  velocity. 



4. SUSCEPTIBILITY OF ROCKS 
TO AEOLIAN  ABRASION 

Rocks  and  minerals  of  different  compositions 
and texture  should have different resistances 
to abrasion  by  windblown  particles.  In  this 
section we review previous  studies of wind 
abrasion, discuss the mechanics  of  abrasion, 
and present the results of laboratory experi- 
ments that were conducted  under  controlled 
conditions  in  order to derive values that can 
be applied to estimates  of  abrasion  on  Earth 
and Mars. 

4.1 PREVIOUS  INVESTIGATIONS 

Except  for the work of Kuenen (19601, 
very few studies have been  made to quantify 
aeolian erosion of natural  materials,  although 
ventifacts have been long recognized and 
described. Abrasion of metals, glasses, and 
ceramics is important in  manufacturing  and 
industrial processes. Much research has been 
done  on  the  topic  for engineering applica- 
tions. The  effects of target  composition, 
impactor size and composition, and impact 
angle have been  investigated  experimentally 
(Neilson and Gilchrist, 1968; Sheldon and 
Finnie, 1966b).  Experimental  and  theore- 
tical studies of the mechanisms of material 
removal for  both  brittle and  ductile  materials 
were conducted  by  Adler  (1976a,  1976b), 
Smeltzer et al. (1970), Sheldon and Finnie 
(1966a),  Sheldon  (1970)  and  Sheldon  and 
Kanhere (1972) and  a  numerical  prediction 
of abrasion  on both  ductile and brittle mate- 
rials was made  by  Finnie (1 960).  The mech- 
anism of  abrasion of brittle fused silica was 
made by Adler (1 974).  The behavior of 
impacting  particles  during  abrasion was stud- 
ied by Tilly and Sage (1970).  The initial  and 
‘steady-state’ erosion  characteristics of a 
target in response to particle  impact was 
noted by Tilley (1969) and discussed by 
Marshall (1979).  Suzuki  and  Takahashi 

(198  1) have conducted  experiments of 
abrasion  in  a geological context. 

4.2 THE MECHANICS OF ABRASION 

The  mechanisms  by which aeolian particles 
disrupt  and remove material  in the abrasion 
process is not well understood. Discussion 
here is limited to aeolian abrasion  of  brittle 
materials (as opposed to  ductile),  appropriate 
for  rocks  and  minerals,  and is based primarily 
on  interpretations of  SEM photographs of 
materials  abraded  under laboratory condi- 
tions.  Not all particle  impacts  lead  directly 
to erosion;  some  may damage the surface but 
not necessarily remove material.  Under  most 
conditions  material removal occurs where 
propagating  fractures  intersect. 

Fracture  Patterns Produced By Rounded 
Particles 

Well-rounded particles  such as sand grains 
impacting the  flat surface of an  elastic, brittle 
surface  become  flattened at  the  contact and 
the target  surface is bent downwards.  The 
area of contact increases with  particle  radius 
and  applied  load. If the load exceeds a 
critical limit,  a  circular  crack - called a 
Hertzian  fracture - develops  around the 
indentation  site, generally at a radius 10  to 
30% greater than  the  contact radius (Johnson 
et al., 1973). In its ideal form,  the crack 
extends a short distance vertically into  the 
specimen  before  turning  outward  and  propa- 
gating into a  conical frustrum,  the  depth  of 
which increases with increasing load. 

Andrews (193 l ) ,  Knight et al. (1977), 
and  others have shown that  the surface dia- 
meter of a  Hertzian  fracture (DH) is constant 
and  independent of the impacting grain 
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velocity, a result in agreement  with theory 
for  perfectly spherical impactors. However, 
for well-rounded, but irregularly-shaped parti- 
cles, the mean  diameter  of a population of 
cracks increases with  velocity (Marshall, 
1979; Fig. 22a). Because the impacting 
grains were not perfect  spheres, the targets 
were subject to  indentation  with a wide 
range of radii and  at  low  impact velocities 
only the smaller  radii  (which concentrate  the 
impact stresses) were capable of  producing 
Hertzian  fractures. At high impact velocities 
(vp) both large and small radii were effective 
and  mean  crack  diameter (DH) increased with 
velocity. The relationship DH a vpo . 4 7  was 
derived by  Finnie  (1960), which in compari- 
son to  the relationship  between  maximum 
contact radius (am)  and velocity (am a 
vpo m 4  ), implies that  the cracks  formed at 
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Figure 22. Effect  of particle velocity  (a, top diagram) 
and diameter (b,  bottom diagram) on Hertzian - 
fracture diameter; each point represents the mean of 
100 measurements of quartz grains impacting on 
quartz plates (after Marshall, 19  79). 

IMPACT PATH OF 

Figure 23. Effect of particle trajectov on opening 
angle, 8, defined in inset (a, top diagram), diameter 
(b,  middle diagram) and  Orientation (c, bottom dia- 
gram)  of Hertzian fractures. Each point represents 
the mean of 100 measurements (afterMarshall,1979). 

about  the  time of  pressure release. Johnson 
et al. (1973) observed cracks smaller than 
maximum contact size formed  during  unload- 
ing and attributed  the behavior to an  elastic 
mismatch  between indentor and  specimen 
which affects the stress field via frictional 
forces at  the  contact  interface. 

Figure 22b  shows the  effect of  particle 
size (Dp)  on  the surface  diameter  of  Hertzian 
fractures for  impact of irregularly-shaped 
particles. Perfectly  spherical  indenters give 
rise to an  exponential  relationship of the 
form  DH a Dpm when Dp < 7.0  cm  and a 
linear  relationship  when Dp > 7.0 cm (Tillett, 
1956). 

At  impact angles  less than  90”  the tangen- 
tial  component of force  introduced  into  the 
stress system inhibits cracking in  front of the 
grain and the result is an arc-shaped or appar- 
ently  incomplete  Hertzian  fracture (Fig. 23). 
As the angle decreases the  opening angle 0 
increases (0 = the angle subtended  by  the 
‘horns’ of the crack at an imaginary center of 
curvature  of the arc), the diameter decreases, 
and  the preferred  orientation  of the individual 
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crack - increases (orientation is defined as 
the  direction  pointed to by a  line  bisecting 
8 1. 

Fracture  Patterns Produced By Angular 
Particles 

Angular  particles do  not abrade  in the same 
manner as rounded  particles.  A  great diver- 
sity of erosion patterns can arise from  only 
minor variations in  particle  shape  and  from 
the  manner in which the particle  strikes the 
surface. Lawn and Wilshaw (1975) consider 
the  fracture  propagation  shown in  Figure 24 
to be  a basic sequence  during  normal  loading 
of a  surface  with  a  sharp point. Initial 
contact induces  a  zone of inelastic  deforma- 
tion  (crushing and/or plastic  deformation) 
and at  some  threshold  stress  initiates  a vertical 
crack (or median  vent) which propagates 
downward  with increasing load.  Upon 
unloading the median  vent closes (but does 
not heal)  and  lateral vents develop which 
continue to propagate after removal of the 
impacting grain. Chipping can result if the 
lateral  vents reach the surface of the  indented 
specimen  (Fig. 25). Often  the median  vent 
will break  through to  the surface of the speci- 
men and give rise to a radial fracture  trace. 
The  length of the surface  trace is an indica- 
tion of the  depth of the vent. For isotropic 
materials the  number  of median  vents is 
limited  only by the  mutual stress-relieving 

Figure 24. Crack propagation  below a pointed  parti- 
cle; ZID is zone of inelastic defomation; MV is 
median  vent; L Vis lateral  vent. 

Figure 25. Surface  pattern  produced by intersection 
of lateral  and  median  vents. 

influence of neighbors; several intersecting 
the surface  produce  star-shaped  patterns 
(Fig. 25). In  anisotropic  systems  the  vents 
tend to follow cleavage directions. 

The  Influence Of Fracture  Patterns On 
Abrasion Rates 

Abrasion rates of ventifacts  reflect the stage 
of surface-texture  evolution.  For  rounded 
particles  impacting an initially smooth sur- 
face, textural  development  and  related 
abrasion have the following  evolution. During 
the  embryonic phase of fracture  network 
development,  abrasion is inhibited (Fig. 26). 
At  some  critical  spatial  density  of conical 
frustra,  material  becomes easily removed, but 
abrasion diminishes thereafter because the 
isolated  frustra  are  difficult to remove. 
Impact  on  the  top of a  cone  apparently  only 
deepens the  structure, whereas cone spacing 
prevents contact of rounded  particles  with 
surfaces  between the cones.  Abrasion on  the 
final surface  should be  somewhat less rapid 
than  during  cone removal because surface 
roughness  prohibits  cone formation - such 
fractures  probably have deeper  penetration 

. . .  
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Figure 26. Mass lost  in  aeolian  erosion  as a finction 
of time; profire in lower  part o f  diagram is deduced 
from SEM obsewations of Marshall ( I  9 79), compared 
with  laboratory  experiments of Adler (1976b). 

than cleavage-controlled chipping.  Figure 27 
shows  scanning  electron  microscope photos of 
four  evolutionary phases in  this  sequence; 
a,  b, c and d  correspond to  the  four stages 
signalled in Figure 26.  Although  this  sequence 
of events is dependent  upon  the initial  surface 
of the material,  it  may  be  typical  for venti- 
facts if periods  between  abrasion  permit 
chemical smoothing of the roughened  abraded 
surface. For a  ventifact  impacted  with angular 
particles, the  textural development  may  pro- 
ceed in the  manner  depicted in Figure .28. 

4.3 ABRASION  EXPERIMENTS 

The  susceptibility to abrasion (Sa) for  differ- 
ent materials is expressed as the  ratio of the 
material mass eroded to either  the mass of 
impacting  particles or  the  number of impact- 
ing particles. Sa varies with  parameters  such 
as impacting  particle  velocity (v,) and angle 
of impact. Angle of impact is defined as the 
angle between the surface  and the impacting 
particle  and is the  complement of the inci- 
dence angle. 

In  order to determine Sa values for vari- 
ous  rocks under a wide range of  conditions, 
an apparatus  (Fig.  29) was fabricated  that 

allows impact  velocity,  impact angle, impact- 
ing  particle size and  type, sample type, and 
atmospheric  density  and  composition to be 
controlled  (Appendix 2). Marshall (1 979) 
found that anomalous weight losses occur 
in samples that were not pre-abraded and that 
have not attained  a  steady  state  in aeolian 
abrasion.  Thus, all targets were pre-abraded 
prior to experiments to establish fracture 
patterns  in  their surfaces. Each target was 
weighed to kO.1 mg  before  and  after  each  run. 
Dust clinging to the  target was removed by 
compressed air. The  fraction of the  total 
mass of particles  impacting any target was 
determined  from  the  total mass expended  in 
the  experiment  by calculating the angle 
subtended  by  the  target  from  the  geometry 
of the  apparatus and dividing by 360".  A 
check on  the calculated  impact mass was 
made by placing a  particle  catcher in the 
place of one of the sample  stations. 

Quartz  sands were used as the abrading 
particles in most of the experiments because 
they are readily available, their  behavior is 
fairly well understood, and nearly all previous 
abrasion experiments have involved quartz. 
However, basalt sands and sand-size aggre- 
gates of fine grains .were also utilized  in  some 
experiments  (Appendix 2). 

Susceptibilities to abrasion were assessed 
in terms of five parameters:  particle  size, 
particle  velocity, angle of particle impact, 
atmospheric  density,  and  impacting  particle 
composition. 

Sa  Versus  Particle  Diameter 

Figure 30 shows Sa as a  function of diameter 
of impacting  particles (DP = 75,  105, 140, 
and 160 pm) for basalt,  obsidian,  and  hydro- 
cal. Particles impacted at an angle of 90" at 
a  velocity  of 20 m/s in  a CO, atmosphere of 
5 mb  pressure,  conditions  comparable to a 
martian  environment.  The  effect  of  particle 
size in the range analyzed is fairly well de- 
fined by  a  slope  of "3 on a log-log plot 
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Figure 27. Stages  in  erosion of quartz  plate,  impacted by quartz  particles  710-840 p in  diameter  at  speeds of 20 to 
2.5 m Is, a )  embryonic  stage,  showing  tiangular,  crescentic,  and  polygonal  depressions, b )  youthful stage,  showing 
surface  represented by cone tops, c )  advanced  stage,  showing  curved  escarpments,  conchoidal  fractures.  irregular  and 
cleavage-controlled  fractures,  and d )  mature  stage,  showing blocky, cleavage-controlled  structure.  Frame  widths  are: 
a )  420 p m ,  b)  420 p m ,  c )  455 p, and d )  150 pm. 

giving the  relationship  impacting  normal to the  target in a CO, 
atmosphere at  5 mb  pressure.  Although  the 

fined for volcanic  tuff (both welded and 
nonwelded)  and  rhyolite,  the graphs for  most 

Sa Versus  Particle Velocity materials show  a  slope of 2 on a log-log plot, 
giving the relationship 

Figure 3 1 shows  the  effect of impact velocity 
on Sa for  a wide range of rocks  and  materials; Sa a vp2 (36) 
particle  velocities ranged from 5 to  40 m/s. 
Particles were 125 to  180 pm quartz grains, Combining  relationships 23 and  24 gives 

Sa a Dp3 (35) effect of particle  velocity (vp) is poorly de- 
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Sa 0: Dp3  vp2 (3 7) 

which shows that mass lost  per  impact  is 
directly  proportional to the  kinetic energy 
(KE) of the impacting  particle. 

KE = 95 mp vp2 , mp a Dp3 

The very slight  concave-upwards  curvature 
of the  sizeeffect  plots  and  many of the velo- 
cityeffect  plots is  an  indication  that  some 
factor  other  than  kinetic energy may  be 
involved.  This may  be  the size of  the  contact 
area  which  increases  with both velocity  and 
particle size and  increases in  the  number of 
preexisting cracks encountered by the stress 
field. The behavior  of  brick  apparently is 
due to  the development  of  a  sintered  crust  at 
low  and  medium  velocities  which  chipped  off 
in large pieces at high  velocities. 

C. 

D. 

Figure 28. Possible fiacturing and  chipping  sequence 
of a surface impacted with angular particles. 

Sa Versus  Particle  Impact  Angle 

Figure 32 shows the  effect  of  particle  impact 
angle on Sa for  the  test  materials;  Figure 33 
shows  relative  erosion as a function  of  impact 
angle of ideally  ductile  and brittle  materials 
(a.fter Oh  et al., 1972)  for  comparison. 
Most of  the  rocks  and  materials  tested  appear 
to mimic  a combination of typical  brittle 
and  ductile  behavior,  except  obsidian  which 
behaves  as a brittle  material. 

The high susceptibility  at  low  impact 
angles for  some  materials  is  interpreted as 
chipping  and gouging of  microblocks  and  the 
efficiency  with  which they  are removed 
would  increase as the angle declines. Fractures 
propagate to shallower depths as the vertical 
component  of  force diminishes.  However, the 
high susceptibility at high angles suggests an 
apparent high ratio  between  indenter  and 
target  hardness which could lead to crushing 
and  powdering  of the  surface  at high impact 
angles. This  may  provide  some  degree of 
protection  for  the  surface  at  normal (90") 
impact  and  could  account  for  the  reduction 
in  susceptibility.  The  downturn  could  also  be 
due to impacting  particles  rebounding from 
the  target  and  interfering  with  incoming 
particles, but  this possibility  has not been 
assessed fully. 

Sa Versus  Atmospheric Density 

Tests to determine  the  effect of  atmospheric 
pressure on abrasion (Fig. 34) were inconclu- 
sive. Generally at 1 bar  there was slightly 
more erosion for  the  three materials tested 
than  at  martian pressure ( 5  mb). However, 
this  may  be  related  in  some way to air  turbu- 
lence  in  the  confined abrasion  chamber. 

Sa Versus  Particle Composition 

Figure 35 shows Sa for basalt  targets as a 
function of impact velocity for  quartz, 
basalt, and basaltic  ash  particles 125 to 175 
pm in  diameter,  impacting at 90". Although 

I 
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the  data  for basalt and ash particles are 
limited,  there  appears to  be  little  difference  in 
abrasion by quartz  and  basalt, whereas ash 
particles  appear to  be less effective as agents 
of abrasion. 

Experiments were also conducted using 
aggregates as the agents of abrasion. A 
different  apparatus  than MRED was used, so 
the  results  are  not  entirely  compatible  for 
comparisons;  however,  the critical result 

Figare 29. View of the apparatus  used to conduct  experiments to determine  susceptibilities to erosion (Sa). Szmples 
to be  abraded are placed in  holders (a)  positioned  within  cylindrical  chamber (b); cover for chamber (c) swings into 
position such that abrading  particles  (quartz  sand, etc.) in  hopper (d )  are fed into rotating arm (e) where they are 
slung  against the samples; speed of  arm controls the impact  velocity; sample  holders ( a )  can  be  adjusted to control 
impact  angle; 12 samples  can  be  abraded per experiment;  one sample  station ( f )  is modified as an open port to col- 
lect the same amount of material as stnkes each  sample to enable  an  accurate determination of particle flux. Control 
panel is shown  in  foreground;  chamber  can be  evacuated to low  atmospheric  densities and  carbon dioxide can  be 
introduced for martian  simulations (from Greeley et al., 1982). 
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Figure 30. Susceptibilities to abrasion of basalt, 
obsidian, and hydrocal as a finction of particle 
diameter; susceptibility (Sa) is expressed as the ratio 
of target mass eroded (g)  to the number of impacting 
particles ( i )  (from Creeley et  al., 1982). 

was that  for  impact velocities below about 
20 m/s,  the aggregates were plastered against 
the  target, causing a net gain in mass of the 
target  and  forming  a  protective  coating. At 
higher impact velocities, the coating sloughed 
off,  but  there was no measurable loss in 
target mass. 

4.4 SUMMARY 

Susceptibility to abrasion is highly  dependent 
on  the  texture of the  rock,  composition, 
velocity,  and size of  the impacting  particles, 
and the angle of impact.  On a per  impact 
basis, glassy materials will erode very quickly 
for surfaces perpendicular to the  wind; 
crystalline  materials  such as granite and 
basalt  erode more  quickly when surfaces  are 
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Figure 31. Shsceptibilities to abrasion of test mate- 
Mls as functions of particle impact vebcities (from 
Greeley et al.. 1982). 
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Figure 32. Susceptibilities to abrasion of test materials as fitnctions of  particle  impact  angle (from Greeley et al., 
1982). 
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sub-parallel to  the wind. Quartz  and basalt 
grains appear to  be of equal efficiency as 
agents of abrasion; basaltic ash is  less effi- 
cient. Sand-size aggregates of fine grains do 
not  abrade  targets  at low velocities, but  form 
a veneer on  the  surface which shields the 
target  from  abrasion. 

0 
I I I 

0 30" 60' 90" 
IMPACT ANGLE,  deg 

Figure 33. Relative  erosion as a fitnction of impact 
angle for typical  brittle  materials  compared  with 
ductile  materials  (after Oh et al., 1972). The  down- 
turn a t  90" impact angle for brittle  materials is due 
to two factors.  The  first is that  at 90" impact,  virtu- 
ally all o f  the impactor KE goes into fracturing the 
surface  and  there  is no lateral impetus to dislodge 
chips.  The  second  is that, in  abrasion  machines  and 
in  nature,  particles  hitting a surface a t  90" rebound 
straight  back  and interfere  with  incoming  particles, 
protecting the surface from the full impact of sub- 
sequent  impactors. 

Figure 35. Susceptibility to abrasion of basalt as a 
function of impact  velocity by 125 to 175 p 
particles  of  quartz,  basalt  and  basaltic  ash (from 
Creeley et al.. 1982). 
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Figure 34. Susceptibility to abrasion for three 
materials as a function of impacting  particles  velocity 
in a 1 O3 mb (Earth) pressure  environment  and 7.5 mb 
(Mars)  pressure  environment;  although the data  are 
limited,  there is no apparent  difference due to atmo- 
spheric density. Sa  expressed as ratio  of  target mass 
loss to particle mass impacting the target. 
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5 .  WIND FREQUENCY DATA 

The  third  parameter required for estimating 
rates  of aeolian abrasion involves various wind 
data, including wind directions,  strengths, and 
durations.  Ideally, wind data  should also 
include velocity profiles so that surface  shear 
stresses could be derived and  utilized for 
particle  threshold  and  particle  flux analyses. 
In  addition, wind data should  be available for 
a  sufficiently  long  period  of  time to charac- 
terize the local aeolian regime. Unfortunately, 
even minimal wind data are seldom available 
for sites of geologic interest and various 
techniques  must  be  utilized to  extrapolate 
from  other areas. 

5.1 TERRESTRIAL  ENVIRONMENT 

Wind data are usually obtained  from  meteoro- 
logical stations,  such as those associated with 
airports.  Commonly, wind velocities with 
direction  are  determined  for  a single height - 
by convention 10 m above the ground - and 
reduced  in the  form of wind rose diagrams 
which show  the  frequency, velocities, and 
directions of winds for a given interval  of 
time. Profiles of the wind velocity as func- 
tions of height  are  seldom obtained,  yet  this 
is the critical value for  determining  u*. 

In principle, it  may be possible to extra- 
polate wind data from  nearby  recording 
stations to sites of interest.  In  practice  such 
an extrapolation is difficult to achieve. One 
site  where  this was attempted is the  Garnet 
Hill area in southern California,  a classic 
ventifact  locality (Blake, 1855). It is a  site of 
frequent  strong winds and active windblown 
sand.  Sharp (1964,  1980) established long- 
term  experiments to  monitor  the erosion of 
various rocks  and  man-made  materials  and to 
determine mass transport of windblown 
grains as a  function of height above the 
ground. Particles were collected  for  intervals 

as long as four  months, which integrated 
periods of wind activity  with  periods of 
quiescence. Unfortunately, on-site wind data 
were not obtained  during  the  experiment, 
although  Sharp recognized the desirability 
of  such  data. 

The nearest  meteorological  station to 
Sharp’s experimental  site was the Palm 
Springs airport,  about 9 km southeast  of the 
site.  The station has recorded winds for 
many years,  including  the  interval covering 
Sharp’s experiment. As part of a general 
study of ventifacts  and  other aeolian features 
at  Garnet Hill, Hunter  (1979)  obtained wind 
data  at Whitewater Wash in the fall and  winter 
of 1977, near Sharp’s site.  Hunter’s  results 
confirmed Sharp’s earlier  speculations that 
the Palm Springs airport  may not be in a 
favorable  location for providing wind data 
appropriate  for  the  experimental  plot and 
demonstrates  the  difficulties  in  extrapolating 
wind data from one area to  another. 

5.2 MARTIAN  ENVIRONMENT 

During the past  decade  intensive  observations 
of Mars have been  made  from  Earth  and  from 
spacecraft which provide  a  variety of data 
that can  be used to assess wind frequencies. 
Viking landers were equipped  with  meteoro- 
logical instruments to provide data  on  the 
wind velocity, wind direction,  and  atmospher- 
ic  temperature  and pressure (Hess et al., 
1976,  1977; Ryan et al., 1978) and provide 
direct  information  for  two  sites  on Mars. 
Although Viking Lander 2 ceased operation 
in the  late  1970s, Viking Lander  1, designated 
the Mutch Memorial Station,  continued to 
monitor  the winds and to obtain images until 
late 1982. The  prominent winds compare 
favorably  with  aeolian  features observed at 
the landing  site  (Binder et  al., 1977) and  from 
orbit (Greeley et  al., 1978). 
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Observations  from orbit provide addition- 
al clues to  the frequency of threshold-strength 
winds. Relevant data  include  measurements of 
global and local dust  storms  and of albedo 
changes on  the surface.  Global  dust storms 
apparently begin as local dust  storms which 
originate at  low  or mid latitudes  in  the 
southern hemisphere  during the summer. 
During the first  martian  year of the Viking 
mission, two global dust  storms were ob- 
served, whereas only one such  storm  took 
place during the second  martian  year.  Thus, 
threshold wind speeds are exceeded  in the 
source regions of global dust  storms  with  a 
frequency  of about 3 x 1 0-2, averaged over a 
martian  year. 

Strictly  speaking, the term global dust 
storm refers only to suspended  dust in the 
atmosphere. However, because supersonic 
winds would be required to place micron- 
sized dust  directly into suspension (Pollack 
et al., 1976),  undoubtedly  saltation of -100 
pm sand grains also occurs whenever dust is 
raised into  the  atmosphere with the  saltating 
grains aiding the infection  of  fine  material 
into suspension through  impact. Because 
much  lower wind speeds are required for 
saltation to occur,  the above estimate of the 
frequency of raising dust  from the surface 
can also be considered to apply to the fre- 
quency of saltation. 

Although our  understanding of the 
mechanism by which global dust  storms  occur 
is still at a relatively rudimentary stage and 
strong  differences of opinion  exist, it seems 
likely that  much  of  the  martian surface serves 
as a  source region for  dust (Pollack et al., 
1979; Leovy and  Zurek,  1979).  This view- 
point is also supported  by  the lack of a  build- 
up of a  superficial covering of fine  dust  from 
the decay  of the global storms over much  of 
the surface  (Thomas and Veverka, 1979). 
However, the absence of appreciable  albedo 
changes at  the  two  lander sites  during the 
global dust  storms  of  the  first  martian  year 
of  the Viking mission (Guiness et al., 1979) 

indicates that  dust was not raised over all the 
surface  during the genesis of those  storms. 
More generally,  sand  movement  probably 
occurred to  a  greater degree in the  southern 
hemisphere  than the  northern hemisphere 
(the  two Viking landers  are  in the  northern 
hemisphere),  although precession will proba- 
bly cause this  enhanced  sand motion to 
switch  from the  southern to the  northern 
hemisphere  and  back  with  a  cycle  of - io5 
years. 

In addition to grain movement that occurs 
during global dust  storms,  movement  occurs 
on local scales, as revealed by  numerous 
local dust  storms (Fig. 36) and  by  albedo 
changes of the surface. During the first 
martian  year of the Viking mission, about 20 
local dust  storms were observed (Peterfreund 
and  Kieffer,  1979). Allowing for  incomplete- 
ness in coverage, perhaps  100 local dust 
storms actually took place during  this  time. 
A  typical local dust  storm covers an area 
between about  0.01 and 0.1% of the  total 
martian  surface and lasts for  a few days. 

Dark wind streaks  tend to form behind 
topographic  obstacles  such as hills and  crater 
rims (Thomas  and Veverka, 1979). They  are 
considered to form by wind erosion (Greeley 
et al., 1974) and  thus serve to mark  localities 
where saltation  may  occur  more  frequently 
than elsewhere. These  streaks tend to be 
concentrated  between 25' and 40' south 
latitude,  although  they may be  found  at all 
latitudes.  Thus,  saltation  occurs  more fre- 
quently in the lee of craters  and ridges and  in 
the upwind portion of crater  interiors. 

Most places on Mars are  therefore  subject 
to saltation at some  time  during  each  martian 
year,  with the  southern hemisphere  experi- 
encing  greater  activity. The  considerations 
outlined  here  lead  us to  suggest that  saltation 
takes place with  a  frequency ranging between 
about 1 x 10- and 1 x 10" , depending  on 
the region. 
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Figure 36. Three  local  martian dust storms in Arcadia Planitia. Photos were taken with a violet filter during Revs 
I7I-172, February 10, 1977. The  largest  is about I80 km in its longest dimension. Shadows along the northernmost 
cloud indicate a height of 5-10 km. (fiom Bnggs et al., 1979). 

5.3 SUMMARY 

Very little  direct  information on wind fre- 
quencies is available for sites of geological 
interest  on  either  Earth or Mars. Data which 
are available seldom cover a  sufficiently  long 
period  of  time to be  meaningful in the geolo- 
gical context.  For  the  most  part, wind data 
on Earth  must be  extrapolated  from  meteoro- 
logical stations to sites  of  interest. Because of 
the distances and/or varying terrain,  such 

extrapolations  allow,  at  best,  only  crude 
estimates  of wind frequencies. 

On Mars, wind frequency  data can be 
obtained  directly  for  two  sites  from measure- 
ments on the surface  from the Viking landers, 
or indirectly  through  observations  from  orbit. 
However, poor knowledge of the surface 
roughness on Mars hampers  translation of 
wind frequency  data into values of threshold 
and  particle  flux. 



6. RESULTS AND DISCUSSION 

The previous three sections  described the 
parameters involved in calculating  rates  of 
aeolian abrasion  and  present values for each 
parameter derived from  experiments, field 
studies,  and  analytical  models.  These values 
are now used to estimate  rates of abrasion on 
Earth  and Mars. 

6.1 AEOLIAN  ABRASION  ON  EARTH 

Although  naturally  occurring wind-abraded 
materials,  such as ventifacts, have long been 
recognized and  described  (Blake, 1855; 
King, 1936;  Sharp,  1949; and  others),  there 
have been relatively few attempts to deter- 
mine  rates of abrasion.  Rates of abrasion can 
be derived from data provided  from 5 studies, 
summarized in Table 3. However, lack of 
wind frequency  data  and  information  on 
particle flux prevent  a  rigorous  quantitative 
assessment. The first study considered is that 
of Sharp (1949), in which ventifacts in  the 
Big Horn  Mountains, Wyoming are  described. 
Rocks  of several types were abraded  (granite, 
gneiss, and  quartzitic  sandstone) and Sharp 
recognizes at least four  separate  periods of 

wind-cutting. The inferred  rate is 
cm/yr based on the  estimated minimum  abra- 
sion averaged over the  entire  time  since  the 
initiation of wind-cutting the area. 

Hickox (1959)  studied  ventifacts  in  the 
Annapolis Valley of Nova Scotia. The venti- 
facts  are  composed of vein quartz,  quartzite, 
and  indurated  sandstone,  and  Hickox  consid- 
ered the  ventifact faces to have formed  in 
less than  10 years of exposure.  The age  is 
based on rocks that were quarried  from  a  pit 
of known age. 

McCauley et a]. (1979) discovered sand- 
abraded  hearth  stones in Egypt  considered to 
be of  Upper  Paleolithic age (200,000 years). 
The  stones  are  abraded to a depth of 2 to 4 
cm, yielding a rate of abrasion  of  1 to  2 x 
10- cm/yr. 

From  examination of a wind-abraded 
dacite  boulder  on  one  of  the volcanic domes 
at Mono craters,  California,  and the estimated 
age of the domes, Williams (1981)  obtained  a 
rate of abrasion  of -lob3 cm/yr. 

TABLE 3.  Rates  of  aeolian  abrasion on  Earth derived  from ventifacts 

LOCALITY RATE MATERIAL REFERENCE 

Big Horn  Mountains, Wyoming -I 0- ' cm/yr gneiss Sharp (1  949) 

Annapolis  Valley, Nova Scotia -1 0- cm/yr  quartzite,  sandstone  Hickox  (1959) 

Western Egypt 1 to 2 x iu" cm/yr McCauley et al. (1979) 

Mono Craters, California - 1 0- cm/yr dacite Williams (1 98 1) 
I>_ 

Whitewater Wash, California "6 x 10" cm/yr  brick  Sharp (1 964) 
-5 x 10" cm/yr  hydrocal 
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Sharp  (1964) measured  abrasion  rates of 
relatively soft materials at Garnet Hill, Cali- 
fornia over an eleven year  period. He found 
an  abrasion rate of -6 x 10- cm/yr  for 
common red brick  and -5 x 10- cm/yr 
for  hydrocal,  a gypsum cement.  Further 
study  at  the  site  (Sharp,  1980) showed  a 
substantial  increase  in  abrasion  rate,  due to 
the increased sand  supply  upwind of the 
abrasion  test  site caused by  flooding  of the 
Whitewater River. 

The five cases described above have a 
range of rates  from to 6  x 10- cm/yr, 
and  represent widely varying environments 
from cold and wet to hot and dry. These 
rates  are  comparable to those  inferred by 
McCauley et al. (1 981) and  provide  a basis 
for comparing  rates  and ages of surfaces 
described. 

6.2 RATE OF WIND ABRASION ON MARS 

Rates of wind abrasion at  the VL-1 site  on 
Mars can be  estimated  from  saltation  fluxes 
and wind frequencies  (Table 4) and  suscepti- 
bilities to abrasion for  potential martian 
surface  materials  (Table  5). Basalt and hydro- 
cal were considered as targets. Basalt is  the 
most likely material  present  on the martian 
surface.  Hydrocal was  used  as an  analog to 
indurated clay which might also be on Mars. 
Several impactors were considered:  quartz, 
basalt,  basaltic  ash,  and aggregates composed 
of finer grains. All particles were -100 pm 
in  diameter,  the size most easily moved on 
Mars (Fig. 3). For  the calculation, abrasion of 
rocks was considered for a  height of 10-1 2 
cm above the  surface, corresponding to  the 
size of many  rocks at  the VL-1 site.  Impacts 
were considered to  occur  normal to vertically 
oriented  rock  surfaces  due to  the flat trajec- 
tories of saltating  particles on Mars. 

site are about 40% of  the geostrophic wind 
speeds (Leovy and  Zurek,  1979).  The 25-30 
m/s observed wind speeds thus  imply  a 
u, = 62-75  m/s.  This range is consistent  with 
the  upper  dust  cloud speed of 50 m/s ob- 
served over, VL-1 when the near-surface 
winds of 25-30 m/s were recorded  (James  and 
Evans, 1981). For a  height  of  10-12 cm above 
the surface  and  a u, = 70  m/s, we would 
expect  the  typical  saltating  particle to be 
moving at -30% of u,, or -20 m/s (Fig.  12). 

The  most  difficult  parameter to assess  is 
the  flux  of  saltating particles.  The  movement 
of particles at VL-1 would not  be greatly 
inhibited  by  the presence of rocks. Even 
though  rocks  are  common  at VL-1, Moore 
et al. (1977)  found  that fine-grained material 
covers most of the surface  and the rocks 
occupy less than 25% of  the  total area. On 
Earth, a  comparable  rock  concentration 
would affect aeolian activity.  Depending on 
the size and  spacing of the rocks,  particle 
movement  could  be  enhanced in areas of high 
turbulence  and  retarded  in wind ‘shadows.’ 
Because of the low  martian  atmospheric 
density,  however,  only  surfaces  with a rough- 
ness, zo, greater  than  1 cm would greatly 
affect  particle motion. The value of zo at 
VL-1 is only  0.1-1.0 cm (Sutton  et al., 1978); 
hence,  from  the  standpoint  of  particle move- 
ment,  the VL-1 site  should  be  the  same as 
the ‘sand only’ case of Pollack et al. (1976). 
Therefore,  the  saltation flux  equation of 
White (1979) can be used to calculate Q for 
VL-1 (Table 4). Since wind speeds  measured 
at VL-1 rarely  exceed  threshold  and then only 
slightly,  a value of u* 20% larger than u* 
was used for  the calculation. Between 10-1 1 
cm above the  surface,  q,  the  flux per unit 
area, is about 5% of Q, the  flux  per  unit 
lane  width  (Fig.  18). 

In  order to  use the  appropriate values for The remaining  parameter  required to 
susceptibility to abrasion,  particle velocities calculate an aeolian abrasion rate is f, the 
for measured winds at  the VL-1 site  must  be frequency of saltation-strength winds. Al- 
determined.  The winds measured at  the VL-1 though we have only limited  meteorological 
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TABLE 4. Factors involved in estimating rates  of aeolian abrasion at VL-1 
- ~ ". .~ 

FACTOR VALUE NOTES 
___ - -. . ." 

Wind velocity u measured a t   V L 1  25-30 mls 

Threshold velocity u *t 1.25 mls 

threshold strength (and strongest) 
winds measured at height of VL-1 
anemometer (Hess et al., 1977; J.A. 
Ryan, personal communication,  1981) 

for D = 100 pm, atmospheric surface 
pressure of 10 mb,  215 K (Greeley et 
al., 1980) 

P 

Shear velocity u* 1.5 m/s 20% above threshold 

Freestream velocity u, 

Wind frequency f 

Flux Q 

Flux q at  10-12 cm height 

70 m/s 

10-4 

Particle velocity at 10-12 cm  height 20 m/s 

1.3 x 10" g/cm=sec calculated from White (1979) for 
u ,= l .Sandu  =1 .25  *t 

6.6 x g/cm2 -set at 10-12 cm above surface, q = 
(0.05) Q, shown in Figure 18 

Particle size  Dp 

Impact angle 

based on u = (O.~)(U,) given by Leovy 
and  Zurek (1979) 

frequency of winds 25-30 m/s (J.A. 
Ryan, personal communication, 198 1) 

100  pm 

90" 

average particle velocity at height of 
10-12 cm, vp = 0.3 u, (from Fig. 12) 

particle size most easily moved by 
lowest strength wind (from Fig. 3) 

for simplicity in the calculation, only 
90" impacts were considered 

data  from  VL-1,  an  upper value  is - the  ejecta  and rims of the small craters  in 
(J.A. Ryan, personal communication). the vicinity of VL-1 would also have been 

heavily eroded  and/or  buried unless they 
The rate Of abrasion can be were  very young.  However, there is no  model 

for vL-l from Equation of  surface  rock  production  or  recent  impact 
and  Table 4. Typical  rates at VL-1 for basalt cratering flux that would allow the vL-l 
targets are 3 x lo-' m / c m 2  'set, which is and orbiter  observations a d  the high calcu- 
equivalent to  x cm/yr.  These  rates lated abrasion rate all to  be  correct. 
are  enormous  and, if allowed to  operate  for 
any reasonable length of time,  result in We consider several possible solutions 
drastic  modification of the  rocks  at VL-1, to  the discrepancy between  observations  of 
much  more  than is observed. Furthermore,  the  surface  and  the  calculated abrasion rate. 
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TABLE 5 .  Estimated  rates of aeolian  abrasion  at  VL-1 

Abrasion Rate Abrasion Rate 
Target Particle  Sa*  gm/cm2 s cmlyrt 

Basalt quartz 2 x 10-4 1 x 10-10 2 x 10-3 

Basalt basalt 2 x 10-4 1 x 10-10 2 x 10-3 

Basalt ash 4 x 10-5 3 x  10-1' 3 x 10-4 

Hydrocal quartz  1 x 10-4 6 x 10-l' 2 x 10-3 

Hydrocal basalt 5 x 10-4 3 x 8 x lo-' 

Hydrocal ash 3 x 10-4 2 x 10-10 5 x 10-3 

Rate = Susceptibility Sa x flux q  x wind  frequency f 

* From MRED experiments 

? Direct conversion from mass loss;  does not  take  into  account  differences in abrasion resulting from varying impact 
angles 

In order of increasing likelihood,  these  are: 
( 1 )  climatic  considerations, (2) surface his- 
tory, and (3) factors dealing with  the targets, 
particles,  and  particle  mobility  on Mars. 

Climatic  Effects 

The  estimated  rates of aeolian abrasion given 
here assume present-day wind strengths  and 
frequencies and other meteorological  condi- 
tions.  Yet  the  frequency  of aeolian activity 
on Mars may have varied considerably over 
its  history  due to possible oscillatory  and 
secular changes in  atmospheric pressure. The 
oscillatory changes arise from  astronomical 
variations  in  orbital  and axial characteristics, 
whereas secular changes result  from  long  term 
geochemical processes. 

The  atmospheric pressure at  the surface, 
Pay affects  the  frequency  of aeolian activity 
due to the  dependence  of  both  the wind 
speed distributions  function  and  the  threshold 
wind speed, on Pa. According to argu- 
ments  advanced by Pollack (1979),  the  for- 
mer is expected to change little  for large 

changes in Pa about  the  current value. How- 
ever, the  measurements of Greeley et al. 
(1980)  indicate  that u q  0: Pa - I n  , as shown 
in Figure 3. And as illustrated  in Figure 3 
and Equation 33, the frequency of aeolian 
activity  depends very sensitively on u * ~ ,  
that is, at  the  current  epoch  it is only the 
relatively infrequent, highest wind speeds 
that set  particles into  motion.  Thus if Pa is 
less than  about  1/4  the  current  atmospheric 
pressure, no aeolian activity  may  occur; if 
it is  an order  of  magnitude larger, aeolian 
activity  may  occur  almost all the time. 

Solar and planetary  perturbations cause 
the  eccentricity of Mars' orbit and the obli- 
quity  of  its axis of  rotation  to undergo quasi- 
periodic  oscillations on a  time scale of lo5  to  
lo6 years and the  orientation of its axis to 
precess with  a  period  of  175,000  years,  with 
the  eccentricity  and  obliquity varying be- 
tween  extremes  of 0 to 0.14  and  15 and 35", 
respectively (Ward, 1974).  It has  been sug- 
gested that a large amount  of COz , the 
principal  atmospheric  constituent, is currently 
contained  in  the  subpolar  regolith - about an 
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order of magnitude  more C02  than is present 
in the  atmosphere (Fanale  and  Cannon, 
1979).  At times  of  high obliquity,  the annual- 
ly averaged temperature  at high latitudes 
increases and  hence  a  larger  amount  of C 0 2  is 
placed into  the  atmosphere  and a smaller 
amount is taken up by  the regolith.  The 
opposite  occurs at times of low  obliquity, 
with the  C02 being stored  in  permanent 
polar caps. 

Measurements of C02 absorption onto 
fine-&ained dust suggest that  the  atmospheric 
pressure could rise to  values of  about 20 mb 
(3 times the  current value) at times of the 
highest obliquity  and  could decrease to 
values of less than  1  mb at times  of the lowest 
obliquity,  due to  the  formation  of  permanent 
C02 polar caps (Fanale  and  Cannon,  1979; 
Toon  et al., 1980).  Under  these circum- 
stances, no aeolian activity  would be expected 
in the  latter  situation and a  substantially 
elevated rate of aeolian  activity - perhaps 
as much as an order of magnitude - would be 
expected  in  the  former  situation. However, it 
should be remembered that an enhanced level 
of aeolian activity  may  result  mostly  from the 
lowering of the threshold wind speed  and thus 
involves chiefly  lower wind speeds, for which 
erosion  occurs a t  a  diminished  rate. Never- 
theless, global dust  storms will be more fre- 
quent and  may involve wind speeds  compar- 
able to today’s values due to dust-wind 
feedback  relationships. 

The precession of the axis of rotation 
causes a change in the relationship  between 
seasons in a given hemisphere  and the posi- 
tion of Mars in its  orbit.  At  present,  summer 
solstice in the  southern hemisphere  occurs at 
a  time when Mars  is close to  its perihelion 
position. This relationship  may  be  responsible 
for  the  apparently greater  aeolian  activity in 
the  southern hemisphere than in the  northern 
for  the present  epoch.  If so, the  northern 
hemisphere  may have had  greater aeolian 
activity half a precession cycle  earlier 
(-100,000  years)  and more generally this 
difference will vary in  an  oscillatory  fashion. 

Over the lifetime  of Mars, a  few bars of 
COz - that is, about 300 times the  amount 
now  in the atmosphere - may have been  out- 
gassed from the planet’s interior (Pollack and 
Black, 1979). Conceivably, much of the 
outgassed C02 remained in  the  atmosphere 
during  the early history  of Mars. However, 
due to the possible formation of carbonate 
rocks  and the development  of the regolith, 
the  atmospheric pressure may have more or 
less monotonically  declined  with  time  over 
the last  few billion years (Pollack and Yung, 
1980).  In  this case, the level of aeolian 
activity may have been substantially  higher 
in  its  past  than  at  the  present  time. We can 
place an  upper  boundary on  the  amount of 
enhancement  by  supposing  the global dust 
storms occurred all the  time,  but allowing 
enough  time  between successive storms  for  a 
given one to decay  enough to permit  the  next 
to occur. 

From  these  considerations of the climatic 
history  of Mars, aeolian activity  and  abrasion 
could have been as much as an order of mag- 
nitude larger in the past than  they  are  today. 
Thus, not only do climatic  considerations fail 
to  account  for the discrepancy  between the 
preservation of the surface  and the present 
aeolian abrasion if holocrystalline  materials 
were involved, these  considerations drive the 
result  in the opposite  direction. 

Surface History 

The  assumption is made that  the surface of 
Chryse  Planitia observed from  orbit is very 
old because of the presence of  abundant 
impact  craters that were formed  millions to 
hundreds of millions of years ago. These 
craters  and the surface on which they  occur 
could be preserved if they  had been protected 
from  the aeolian regime by a  mantling  deposit 
and then  recently  exhumed, as proposed  by 
Sagan et  al. (1977)  and Binder et  al. (1977). 
Much of Mars appears to be  mantled  by  de- 
posits  of unknown origin, as first  proposed  by 
Soderblom et al. (1973) based on Mariner 9 

I 
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results. The  characteristics  of  the  mantling 
deposits suggest to  most investigations (re- 
viewed by  Carr,  1981)  that  they  are  of 
aeolian origin and  probably  resulted  from 
deposition of fine-grained materials  from 
dust  storms. 

Viking Orbiter images  show many  parts 
of Mars that have  been mantled  and  exhumed, 
as shown in Figure  37.  The  impact  crater in 
this figure has been partly  exhumed,  note  that 
rather  fine  detail has been preserved in the 
ejecta field. Were it  not  for  the  fact  that 
part  of  the  crater remains  buried, it is unlikely 
that  the  crater  and  surrounding  surface would 
have  given any evidence of having been 
mantled. 

Parts of Chryse Planitia, site  of the 
Viking  Lander 1 , also show evidence of having 
been  mantled  and  partly  exhumed, as noted 
by  Greeley et al. (1977b).  Furthermore,  the 
deposits  of fine-grained debris observed from 
the Viking 1 lander (Fig. 5 )  have been de- 
scribed as drifts  of aeolian deposits  that have 
been  eroded  (Mutch et al., 1976). These 
deposits could be the last remnant of a  much 
more extensive mantle  (Sharp  and Malin, 
1983). 

On Earth,  exhumed surfaces formerly 
blanketed  with aeolian deposits can  reveal 
features of  pristine  form.  Figure 38 shows  a 
basaltic plain in Iceland that was buried by 
loess to a  depth  of several meters.  The area is 
currently  undergoing  deflation  and  the 
basaltic flows are being exhumed.  Fine 
structure  on  the scale of  centimeters,  such as 
pahoehoe ropes, has been preserved by  the 
loess and  despite  the extensive aeolian activity 
required  for  deflation,  remains in excellent 
condition. 

Thus,  mantling  of  the  cratered basaltic 
plains of  Chryse Planitia and  subsequent 
exhumation millions or hundreds  of millions 
of years  later  could explain both  the high 
current calculated rate  of abrasion and  the 

preservation  of the cratered  surface.  However, 
high resolution  Viking  Orbiter  images  show 
that  many areas of Mars preserve small, 
ancient  impact  craters,  and  it seems unlikely 
that all such areas could  be explained by 
exhumation because there  are  no known 
‘sinks’ that  could  accomodate  the volume  of 
deflated  sediments.  Further,  the large calcu- 
lated abrasion rates  at VL-1 would  imply that 
stripping  occurred  at  that site in  the very 
recent. (-lo6 years)  past,  .perhaps unreason- 
ably  recent. 

Material Properties 

Rates  of aeolian abrasion are  partly  deter- 
mined by  the  material  properties of both  the 
target  and  the  windblown particles. Despite 
all evidence to  the  contrary, perhaps the 
bedrock  material  on Mars  is not basalt,  but 
some  other  extremely  resistant  rock. How- 
ever, we determined  the  susceptibilities to  
abrasion for  a wide  variety of common  rocks 
(Table 2), and even the  most  resistant yield a 
very high rate  of  abrasion  for Mars. Thus, 
the  bedrock would  have to be  something 
completely foreign to terrestrial  experience; 
from  petrological  considerations  this  seems 
highly unlikely. 

Agents of Abrasion 

The calculated aeolian abrasion rate is based 
on the  assumption  of an  unlimited  and  un- 
restricted  sand  supply. If there is little sand in 
the  system, abrasion will occur  only at a 
greatly  reduced  rate.  There is a considerable 
amount of  sand sized material on Mars,  as 
shown  by  the IRTM (Christensen,  1983)  and 
as inferred  from  the presence of  dunes  and 
dune fields (Tsoar et al., 1979).  However, the 
sand  supply at  the Viking  sites could be 
limited. It is also possible that  the  free move- 
ment  of  sand is inhibited by the presence of 
cohesion in the  uppermost  layer, as perhaps 
inferred  by  the  structure of the  slump in a 
drift  at VL-1 (Binder et al., 1977),  or  by  the 
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Figure 37. Martian  landscape  showing  aeolian mantle being stripped away, exhuming  craters (Viking frame 
438SOl). The width of the frame is approximately 75 km. 

protection of the sand  from the wind by a basalt grains, and  basaltic  ash - all of about 
dust  fallout  deposit.  The  dust would be diffi- 150  pm in diameter  and all striking the same 

to move because Of its grain size target type a t  the same  velocity.  Quartz and 
and the corresponding large '*t needed to basalt grains are  roughly  comparable  in  their 
initiate  movement  (Christensen, 1982). ability to abrade.  Although basaltic ash 

Another  important  factor is the composi-  appears to be less effective than  quartz or 
tion  of the abrasion  agent.  Figure 35 shows Sa basalt by  a  factor of about 2, rates of abrasion 
values based on abrasion  by quartz  sand, based on basaltic ash are  still  much higher 



Figure 38. Basalt  lava flows in  Iceland,  northwest  of  Aswa  volcano,  were  buried by windblown  silt to a depth 
exceeding 2 m and  are currently  being  exhumed by deflation  of the silt;  primary flow features as small as a centi- 
meter remain on the exhumed  surfaces,  evidenced by the pahoehoe  ropes  seen  in the foreground.  Mushroom-shaped 
features to the left of  figure on horizon is remnant  of  aeolian  silt not  yet eroded. 

than  would be reasonable, based on  the age 
of the  cratered  surface.  However, as discussed 
in  Section 4, aggregates of fine  material 
are very inefficient as agents of abrasion.  At 
particle  speeds  lower  than  about  15  m/s, 
aggregates form  a veneer on  the  target  surface 
(Greeley et al., 1982).  Abrasion  does not 
occur  until  velocities  greater  than  15  m/s 
are  achieved. Average particle  speeds in this 
range  on Mars require  freestream  wind  speeds 
in excess of 75  m/s.  The  maximum  inferred 
geostrophic winds measured  at  the Viking 
Lander  site  are  only about 62-75  m/s. Al- 
though wind  speeds  higher than  those mea- 
sured at  the  landing  sites are  predicted  for 

other areas on Mars based on  the global 
circulation  model of Pollack et al. (1981), 
the  frequency of geostrophic winds exceeding 
75  m/s is extremely  low. 

Conclusions 

Calculations of present  rates of aeolian  abra- 
sion  yield  unreasonably high values for  the 
Viking landing  sites when based on  impacting 
grains composed of holocrystalline grains or 
basaltic ash. However, the  surface displays an 
impact  crater  distribution  that  indicates  its 
age to be several hundred million  years  old. 
The  presence of  the  craters  and blocks that 
are  relatively unmodified  on  a  surface of great 
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age, argue against a  continuous high abrasion 
rate.  Although  there are  many  uncertainties 
and  assumptions  in  the  analysis, we consider 
the best  explanation  for  this  discrepancy to 
be a  combination of factors  dealing  with the 
particles  and  the  surface  history,  at  least  for 
the region surrounding the Viking Lander  1 
site. A model has been  proposed  (Greeley, 
1979; Greeley and Leach, 1978)  which 
suggests that  fine  particles (- few pm) derived 
from  the  frequent  dust  storms  and  the rapid 
attrition of larger grains would aggregate to 
form' sand-size grains. Such aggregates are 

found to be very inefficient  agents  of  abrasion 
at  the  low wind  speeds  typical  for Mars. 
However, some sand of holocrystalline grains 
are  undoubtedly  present, as evidenced by the 
presence of dunes on Mars. Thus, over the 
long  period  since the  craters were formed, we 
consider that  there  would have been  more 
erosion  than is apparent.  Thus, given the 
photogeological evidence for  mantling, we 
also consider the  surface was covered with  a 
blanket  of  sediments  and  effectively  shielded 
from  erosion. 
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