3,120 research outputs found
Four-point probe measurements using current probes with voltage feedback to measure electric potentials
We present a four-point probe resistance measurement technique which uses
four equivalent current measuring units, resulting in minimal hardware
requirements and corresponding sources of noise. Local sample potentials are
measured by a software feedback loop which adjusts the corresponding tip
voltage such that no current flows to the sample. The resulting tip voltage is
then equivalent to the sample potential at the tip position. We implement this
measurement method into a multi-tip scanning tunneling microscope setup such
that potentials can also be measured in tunneling contact, allowing in
principle truly non-invasive four-probe measurements. The resulting measurement
capabilities are demonstrated for BiSbTe and Si samples
Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions
A hybrid 2D theoretical model is presented to describe thermoplastic
deformation effects on silicon surfaces induced by single and multiple
ultrashort pulsed laser irradiation in submelting conditions. An approximation
of the Boltzmann transport equation is adopted to describe the laser
irradiation process. The evolution of the induced deformation field is
described initially by adopting the differential equations of dynamic
thermoelasticity while the onset of plastic yielding is described by the von
Mise's stress. Details of the resulting picometre sized crater, produced by
irradiation with a single pulse, are then discussed as a function of the
imposed conditions and thresholds for the onset of plasticity are computed.
Irradiation with multiple pulses leads to ripple formation of nanometre size
that originates from the interference of the incident and a surface scattered
wave. It is suggested that ultrafast laser induced surface modification in
semiconductors is feasible in submelting conditions, and it may act as a
precursor of the incubation effects observed at multiple pulse irradiation of
materials surfaces.Comment: To appear in the Journal of Applied Physic
Analytical evaluation of the X-ray scattering contribution to imaging degradation in grazing-incidence X-ray telescopes
The focusing performance of X-ray optics (conveniently expressed in terms of
HEW, Half Energy Width) strongly depend on both mirrors deformations and photon
scattering caused by the microroughness of reflecting surfaces. In particular,
the contribution of X-ray Scattering (XRS) to the HEW of the optic is usually
an increasing function H(E) of the photon energy E. Therefore, in future hard
X-ray imaging telescopes of the future (SIMBOL-X, NeXT, Constellation-X, XEUS),
the X-ray scattering could be the dominant problem since they will operate also
in the hard X-ray band (i.e. beyond 10 keV). [...]
Several methods were proposed in the past years to estimate the scattering
contribution to the HEW, dealing with the surface microroughness expressed in
terms of its Power Spectral Density (PSD), on the basis of the well-established
theory of X-ray scattering from rough surfaces. We faced that problem on the
basis on the same theory, but we tried a new approach: the direct, analytical
translation of a given surface roughness PSD into a H(E) trend, and - vice
versa - the direct translation of a H(E) requirement into a surface PSD. This
PSD represents the maximum tolerable microroughness level in order to meet the
H(E) requirement in the energy band of a given X-ray telescope.
We have thereby found a new, analytical and widely applicable formalism to
compute the XRS contribution to the HEW from the surface PSD, provided that the
PSD had been measured in a wide range of spatial frequencies. The inverse
problem was also solved, allowing the immediate evaluation of the mirror
surface PSD from a measured function H(E). The same formalism allows
establishing the maximum allowed PSD of the mirror in order to fulfill a given
H(E) requirement. [...]Comment: 10 pages, 6 figures, published in Astronomy & Astrophysics, sect.
"Astronomical Instrumentation". In this version, a typo in two equations has
been corrected. After the correction, the other results, formulae and
conclusions in the paper remain unchange
Electronic structure of indium tungsten oxide alloys and their energy band alignment at the heterojunction to crystalline silicon
The electronic structure of thermally co evaporated indium tungsten oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide and the band alignment at the indium tungsten oxide crystalline silicon heterointerface is monitored. Using in system photoelectron spectroscopy, optical spectroscopy and surface photovoltage measurements we show that the work function of indium tungsten oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease of the band bending at the hetero interface to crystalline silicon than indium oxid
Lack of prophylaxis before the onset of acute venous thromboembolism among hospitalized cancer patients: the SWIss Venous ThromboEmbolism Registry (SWIVTER)
Background: Venous thromboembolism (VTE) prophylaxis remains underutilized, particularly in cancer patients. We explored clinical predictors of prophylaxis in hospitalized cancer patients before the onset of acute VTE. Methods: In the SWiss Venous ThromboEmbolism Registry, 257 cancer patients (61 ± 15 years) with acute VTE and prior hospitalization for acute medical illness or surgery within 30 days (91% were at high risk with Geneva VTE risk score ≥3) were enrolled. Results: Overall, 153 (60%) patients received prophylaxis (49% pharmacological and 21% mechanical) before the onset of acute VTE. Outpatient status at the time of VTE diagnosis [odds ratio (OR) 0.31, 95% confidence interval (CI) 0.18-0.53], ongoing chemotherapy (OR 0.51, 95% CI 0.31-0.85), and recent chemotherapy (OR 0.53, 95% CI 0.32-0.88) were univariately associated with the absence of VTE prophylaxis. In multivariate analysis, intensive care unit admission within 30 days (OR 7.02, 95% CI 2.38-20.64), prior deep vein thrombosis (OR 3.48, 95% CI 2.14-5.64), surgery within 30 days (OR 2.43, 95% CI 1.19-4.99), bed rest >3 days (OR 2.02, 95% CI 1.08-3.78), and outpatient status (OR 0.38, 95% CI 0.19-0.76) remained the only independent predictors of thromboprophylaxis. Conclusions: Although most hospitalized cancer patients were at high risk, 40% did not receive any prophylaxis before the onset of acute VTE. There is a need to improve thromboprophylaxis in cancer patients, particularly in the presence of recent or ongoing chemotherap
Seeing motion and apparent motion
In apparent motion experiments, participants are presented with what is in fact a succession of two brief stationary stimuli at two different locations, but they report an impression of movement. Philosophers have recently debated whether apparent motion provides evidence in favour of a particular account of the nature of temporal experience. I argue that the existing discussion in this area is premised on a mistaken view of the phenomenology of apparent motion and, as a result, the space of possible philosophical positions has not yet been fully explored. In particular, I argue that the existence of apparent motion is compatible with an account of the nature of temporal experience that involves a version of direct realism. In doing so, I also argue against two other claims often made about apparent motion, viz. that apparent motion is the psychological phenomenon that underlies motion experience in the cinema, and that apparent motion is subjectively indistinguishable from real motion
Особенности процесса трещинообразования в массиве при управлении его газодинамикой
Исследован процесс сдерживания перехода угля из потенциально устойчивого состояния
в стадию бурного разрушения. Ей, как правило, предшествует некоторый промежуток времени относительного затишья. Особенно важно улавливать этот момент среди массы различных
откликов массива на ведение горных работ. Одним из вариантов управления развитием и релаксацией системы трещин может служить физико-химическая обработка.The inhibition process of coal transition from the potentially stable state in the stage of stormy destruction is investigation. As a rule, to it is preceded some interval of relative time calm. It
is especially important to catch this moment among mass of different responses of array on the
conduct of mountain works. Physical and chemical treatment can serve as one of control variants
the development and relaxation of the cracks system
Nanocrystalline n Type Silicon Front Surface Field Layers From Research to Industry Applications in Silicon Heterojunction Solar Cells
Nanocrystalline silicon and silicon oxide nc Si Ox H layers grown by plasma enhanced chemical vapor deposition PECVD have shown low parasitic absorption and excellent contact properties when implemented as n type front surface field FSF contact in rear junction silicon heterojunction SHJ solar cells [1 3]. In this contribution we present results from the successful process transfer from the lab at PVcomB at the Helmholtz Zentrum Berlin HZB , to the industrial pilot line at Meyer Burger Germany GmbH MBG . Conversion efficiencies gt; 22.5 were demonstrated on SHJ cell 4 cm2 [2, 3]. The excellent cell performance in the lab and the potential to reduce parasitic absorption in the front stack by using nc SiOx H motivated the process transfer from HZB to MBG. Initial cross processing experiments on 244 cm2 wafers showed the benefit of using nc Si H as FSF layer. We here also emphasize the role of the Si texture on a fast nc Si H nucleation. After cross processing experiments a successful transfer of the nc Si H process and fine tuning resulted in a median cell efficiency of 23.4 . This is in the same range as the MGB reference on 244 cm2 cells, noteworthy, at the same throughput. Currently work is ongoing to further improve the optical performance of the cells by adding oxygen CO
Minimal external representations of tropical polyhedra
Tropical polyhedra are known to be representable externally, as intersections
of finitely many tropical half-spaces. However, unlike in the classical case,
the extreme rays of their polar cones provide external representations
containing in general superfluous half-spaces. In this paper, we prove that any
tropical polyhedral cone in R^n (also known as "tropical polytope" in the
literature) admits an essentially unique minimal external representation. The
result is obtained by establishing a (partial) anti-exchange property of
half-spaces. Moreover, we show that the apices of the half-spaces appearing in
such non-redundant external representations are vertices of the cell complex
associated with the polyhedral cone. We also establish a necessary condition
for a vertex of this cell complex to be the apex of a non-redundant half-space.
It is shown that this condition is sufficient for a dense class of polyhedral
cones having "generic extremities".Comment: v1: 32 pages, 10 figures; v2: minor revision, 34 pages, 10 figure
RNA secondary structure design
We consider the inverse-folding problem for RNA secondary structures: for a
given (pseudo-knot-free) secondary structure find a sequence that has that
structure as its ground state. If such a sequence exists, the structure is
called designable. We implemented a branch-and-bound algorithm that is able to
do an exhaustive search within the sequence space, i.e., gives an exact answer
whether such a sequence exists. The bound required by the branch-and-bound
algorithm are calculated by a dynamic programming algorithm. We consider
different alphabet sizes and an ensemble of random structures, which we want to
design. We find that for two letters almost none of these structures are
designable. The designability improves for the three-letter case, but still a
significant fraction of structures is undesignable. This changes when we look
at the natural four-letter case with two pairs of complementary bases:
undesignable structures are the exception, although they still exist. Finally,
we also study the relation between designability and the algorithmic complexity
of the branch-and-bound algorithm. Within the ensemble of structures, a high
average degree of undesignability is correlated to a long time to prove that a
given structure is (un-)designable. In the four-letter case, where the
designability is high everywhere, the algorithmic complexity is highest in the
region of naturally occurring RNA.Comment: 11 pages, 10 figure
- …
