70 research outputs found
Isomonodromic tau-function of Hurwitz Frobenius manifolds and its applications
In this work we find the isomonodromic (Jimbo-Miwa) tau-function
corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss
several applications of this result. First, we get an explicit expression for
the G-function (solution of Getzler's equation) of the Hurwitz Frobenius
manifolds. Second, in terms of this tau-function we compute the genus one
correction to the free energy of hermitian two-matrix model. Third, we find the
Jimbo-Miwa tau-function of an arbitrary Riemann-Hilbert problem with
quasi-permutation monodromy matrices. Finally, we get a new expression (analog
of genus one Ray-Singer formula) for the determinant of Laplace operator in the
Poincar\'e metric on Riemann surfaces of an arbitrary genus.Comment: The direct proof of variational formulas on branched coverings is
added. The title is modified due to observed coincidence of isomonodromic
tau-function of Hurwitz Frobenius manifolds with Bergman tau-function on
Hurwitz spaces introduced by the author
Isomonodromic tau function on the space of admissible covers
The isomonodromic tau function of the Fuchsian differential equations
associated to Frobenius structures on Hurwitz spaces can be viewed as a section
of a line bundle on the space of admissible covers. We study the asymptotic
behavior of the tau function near the boundary of this space and compute its
divisor. This yields an explicit formula for the pullback of the Hodge class to
the space of admissible covers in terms of the classes of compactification
divisors.Comment: a few misprints corrected, journal reference adde
correction to free energy in hermitian two-matrix model
Using the loop equations we find an explicit expression for genus 1
correction in hermitian two-matrix model in terms of holomorphic objects
associated to spectral curve arising in large N limit. Our result generalises
known expression for in hermitian one-matrix model. We discuss the
relationship between , Bergmann tau-function on Hurwitz spaces, G-function
of Frobenius manifolds and determinant of Laplacian over spectral curve
Genus one contribution to free energy in hermitian two-matrix model
We compute an the genus 1 correction to free energy of Hermitian two-matrix
model in terms of theta-functions associated to spectral curve arising in large
N limit. We discuss the relationship of this expression to isomonodromic
tau-function, Bergmann tau-function on Hurwitz spaces, G-function of Frobenius
manifolds and determinant of Laplacian in a singular metric over spectral
curve.Comment: 25 pages, detailed version of hep-th/040116
Normalized Ricci flow on Riemann surfaces and determinants of Laplacian
In this note we give a simple proof of the fact that the determinant of
Laplace operator in smooth metric over compact Riemann surfaces of arbitrary
genus monotonously grows under the normalized Ricci flow. Together with
results of Hamilton that under the action of the normalized Ricci flow the
smooth metric tends asymptotically to metric of constant curvature for , this leads to a simple proof of Osgood-Phillips-Sarnak theorem stating that
that within the class of smooth metrics with fixed conformal class and fixed
volume the determinant of Laplace operator is maximal on metric of constant
curvatute.Comment: a reference to paper math.DG/9904048 by W.Mueller and K.Wendland
where the main theorem of this paper was proved a few years earlier is adde
Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmuller geodesic flow
We compute the sum of the positive Lyapunov exponents of the Hodge bundle
with respect to the Teichmuller geodesic flow. The computation is based on the
analytic Riemann-Roch Theorem and uses a comparison of determinants of flat and
hyperbolic Laplacians when the underlying Riemann surface degenerates.Comment: Minor corrections. To appear in Publications mathematiques de l'IHE
- …