70 research outputs found

    Isomonodromic tau-function of Hurwitz Frobenius manifolds and its applications

    Full text link
    In this work we find the isomonodromic (Jimbo-Miwa) tau-function corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss several applications of this result. First, we get an explicit expression for the G-function (solution of Getzler's equation) of the Hurwitz Frobenius manifolds. Second, in terms of this tau-function we compute the genus one correction to the free energy of hermitian two-matrix model. Third, we find the Jimbo-Miwa tau-function of an arbitrary Riemann-Hilbert problem with quasi-permutation monodromy matrices. Finally, we get a new expression (analog of genus one Ray-Singer formula) for the determinant of Laplace operator in the Poincar\'e metric on Riemann surfaces of an arbitrary genus.Comment: The direct proof of variational formulas on branched coverings is added. The title is modified due to observed coincidence of isomonodromic tau-function of Hurwitz Frobenius manifolds with Bergman tau-function on Hurwitz spaces introduced by the author

    Isomonodromic tau function on the space of admissible covers

    Get PDF
    The isomonodromic tau function of the Fuchsian differential equations associated to Frobenius structures on Hurwitz spaces can be viewed as a section of a line bundle on the space of admissible covers. We study the asymptotic behavior of the tau function near the boundary of this space and compute its divisor. This yields an explicit formula for the pullback of the Hodge class to the space of admissible covers in terms of the classes of compactification divisors.Comment: a few misprints corrected, journal reference adde

    1/N21/N^2 correction to free energy in hermitian two-matrix model

    Full text link
    Using the loop equations we find an explicit expression for genus 1 correction in hermitian two-matrix model in terms of holomorphic objects associated to spectral curve arising in large N limit. Our result generalises known expression for F1F^1 in hermitian one-matrix model. We discuss the relationship between F1F^1, Bergmann tau-function on Hurwitz spaces, G-function of Frobenius manifolds and determinant of Laplacian over spectral curve

    Genus one contribution to free energy in hermitian two-matrix model

    Full text link
    We compute an the genus 1 correction to free energy of Hermitian two-matrix model in terms of theta-functions associated to spectral curve arising in large N limit. We discuss the relationship of this expression to isomonodromic tau-function, Bergmann tau-function on Hurwitz spaces, G-function of Frobenius manifolds and determinant of Laplacian in a singular metric over spectral curve.Comment: 25 pages, detailed version of hep-th/040116

    Normalized Ricci flow on Riemann surfaces and determinants of Laplacian

    Full text link
    In this note we give a simple proof of the fact that the determinant of Laplace operator in smooth metric over compact Riemann surfaces of arbitrary genus gg monotonously grows under the normalized Ricci flow. Together with results of Hamilton that under the action of the normalized Ricci flow the smooth metric tends asymptotically to metric of constant curvature for g≥1g\geq 1, this leads to a simple proof of Osgood-Phillips-Sarnak theorem stating that that within the class of smooth metrics with fixed conformal class and fixed volume the determinant of Laplace operator is maximal on metric of constant curvatute.Comment: a reference to paper math.DG/9904048 by W.Mueller and K.Wendland where the main theorem of this paper was proved a few years earlier is adde
    • …
    corecore