191 research outputs found

    Critical Points of Tumor Necrosis Factor Action in Central Nervous System Autoimmune Inflammation Defined by Gene Targeting

    Get PDF
    Tumor necrosis factor (TNF)–dependent sites of action in the generation of autoimmune inflammation have been defined by targeted disruption of TNF in the C57BL/6 mouse strain. C57BL/6 mice are susceptible to an inflammatory, demyelinating form of experimental autoimmune encephalomyelitis (EAE) induced by the 35–55 peptide of myelin oligodendrocyte glycoprotein. Direct targeting of a strain in which EAE was inducible was necessary, as the location of the TNF gene renders segregation of the mutated allele from the original major histocompatibility complex by backcrossing virtually impossible. In this way a single gene effect was studied. We show here that TNF is obligatory for normal initiation of the neurological deficit, as demonstrated by a significant (6 d) delay in disease in its absence relative to wild-type (WT) mice. During this delay, comparable numbers of leukocytes were isolated from the perfused central nervous system (CNS) of WT and TNF−/− mice. However, in the TNF−/− mice, immunohistological analysis of CNS tissue indicated that leukocytes failed to form the typical mature perivascular cuffs observed in WT mice at this same time point. Severe EAE, including paralysis and widespread CNS perivascular inflammation, eventually developed without TNF. TNF−/− and WT mice recovered from the acute illness at the same time, such that the overall disease course in TNF−/− mice was only 60% of the course in control mice. Primary demyelination occurred in both WT and TNF−/− mice, although it was of variable magnitude. These results are consistent with the TNF dependence of processes controlling initial leukocyte movement within the CNS. Nevertheless, potent alternative mechanisms exist to mediate all other phases of EAE

    Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump Study in 17 countries

    Get PDF
    AIMS/HYPOTHESIS: To assess the use of paediatric continuous subcutaneous infusion (CSII) under real-life conditions by analysing data recorded for up to 90 days and relating them to outcome. METHODS: Pump programming data from patients aged 0-18 years treated with CSII in 30 centres from 16 European countries and Israel were recorded during routine clinical visits. HbA(1c) was measured centrally. RESULTS: A total of 1,041 patients (age: 11.8 +/- 4.2 years; diabetes duration: 6.0 +/- 3.6 years; average CSII duration: 2.0 +/- 1.3 years; HbA(1c): 8.0 +/- 1.3% [means +/- SD]) participated. Glycaemic control was better in preschool (n = 142; 7.5 +/- 0.9%) and pre-adolescent (6-11 years, n = 321; 7.7 +/- 1.0%) children than in adolescent patients (12-18 years, n = 578; 8.3 +/- 1.4%). There was a significant negative correlation between HbA(1c) and daily bolus number, but not between HbA(1c) and total daily insulin dose. The use of 7.5%. The incidence of severe hypoglycaemia and ketoacidosis was 6.63 and 6.26 events per 100 patient-years, respectively. CONCLUSIONS/INTERPRETATION: This large paediatric survey of CSII shows that glycaemic targets can be frequently achieved, particularly in young children, and the incidence of acute complications is low. Adequate substitution of basal and prandial insulin is associated with a better HbA(1c)

    Plasmid-Cured Chlamydia caviae Activates TLR2-Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection

    Get PDF
    Loss of the conserved “cryptic” plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains

    Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs.</p> <p>Results</p> <p>Using a combination of <it>in silico </it>and experimental approaches, we identified and characterized novel <it>P</it>. <it>abyssi </it>ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel <it>P</it>. <it>abyssi </it>ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four <it>P</it>. <it>abyssi </it>CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized.</p> <p>Conclusions</p> <p>This work proposes a revised annotation of CRISPR loci in <it>P</it>. <it>abyssi </it>and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.</p

    A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans

    Get PDF
    In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA

    Biological versus chronological ovarian age:implications for assisted reproductive technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women have been able to delay childbearing since effective contraception became available in the 1960s. However, fertility decreases with increasing maternal age. A slow but steady decrease in fertility is observed in women aged between 30 and 35 years, which is followed by an accelerated decline among women aged over 35 years. A combination of delayed childbearing and reduced fecundity with increasing age has resulted in an increased number and proportion of women of greater than or equal to 35 years of age seeking assisted reproductive technology (ART) treatment.</p> <p>Methods</p> <p>Literature searches supplemented with the authors' knowledge.</p> <p>Results</p> <p>Despite major advances in medical technology, there is currently no ART treatment strategy that can fully compensate for the natural decline in fertility with increasing female age. Although chronological age is the most important predictor of ovarian response to follicle-stimulating hormone, the rate of reproductive ageing and ovarian sensitivity to gonadotrophins varies considerably among individuals. Both environmental and genetic factors contribute to depletion of the ovarian oocyte pool and reduction in oocyte quality. Thus, biological and chronological ovarian age are not always equivalent. Furthermore, biological age is more important than chronological age in predicting the outcome of ART. As older patients present increasingly for ART treatment, it will become more important to critically assess prognosis, counsel appropriately and optimize treatment strategies. Several genetic markers and biomarkers (such as anti-Müllerian hormone and the antral follicle count) are emerging that can identify women with accelerated biological ovarian ageing. Potential strategies for improving ovarian response include the use of luteinizing hormone (LH) and growth hormone (GH). When endogenous LH levels are heavily suppressed by gonadotrophin-releasing hormone analogues, LH supplementation may help to optimize treatment outcomes for women with biologically older ovaries. Exogenous GH may improve oocyte development and counteract the age-related decline of oocyte quality. The effects of GH may be mediated by insulin-like growth factor-I, which works synergistically with follicle-stimulating hormone on granulosa and theca cells.</p> <p>Conclusion</p> <p>Patients with biologically older ovaries may benefit from a tailored approach based on individual patient characteristics. Among the most promising adjuvant therapies for improving ART outcomes in women of advanced reproductive age are the administration of exogenous LH or GH.</p

    Mass spectrometry imaging for plant biology: a review

    Get PDF

    Ueber die klinische Verwerthbarkeit und das Wesen der Complementbindungsreaction bei Tuberculose nach Marmorek

    No full text
    corecore