3 research outputs found

    Vision and visual history in elite-/near-elite level cricketers and rugby-league players

    Get PDF
    Background: The importance of optimal and/or superior vision for participation in high-level sport remains the subject of considerable clinical research interest. Here we examine the vision and visual history of elite/near-elite cricketers and rugby-league players. Methods: Stereoacuity (TNO), colour vision, and distance (with/without pinhole) and near visual acuity (VA) were measured in two cricket squads (elite/international-level, female, n=16; near-elite, male, n=23) and one professional rugby-league squad (male, n=20). Refractive error was determined, and details of any correction worn and visual history were recorded. Results: Overall, 63% had their last eye-examination within 2 years. However, some had not had an eye examination for 5 years, or had never had one (near-elite-cricketers: 30%; rugby-league players: 15%; elite-cricketers: 6%). Comparing our results for all participants to published data for young, optimally-corrected, non-sporting adults, distance VA was ~1 line of letters worse than expected. Adopting α=0.01, the deficit in distance-VA deficit was significant, but only for elite-cricketers (p0.02 for all comparisons). On average, stereoacuity was better than in young adults, but only in elite-cricketers (p<0.001; p=0.03, near-elite-cricketers; p=0.47, rugby-league -players). On-field visual issues were present in 27% of participants, and mostly (in 75% of cases) comprised uncorrected ametropia. Some cricketers (near-elite: 17.4%; elite: 38%) wore refractive correction during play but no rugby-league player did. Some individuals with prescribed correction choose not to wear it when playing. Conclusion: Aside from near stereoacuity in elite-cricketers, these basic visual abilities were not better than equivalent, published data for optimally-corrected adults. 20-25% exhibited sub-optimal vision, suggesting that the clearest possible vision might not be critical for participation at the highest levels in the sports of cricket or rugby-league. Although vision could be improved in a sizeable proportion of our sample, the impact of correcting these, mostly subtle, refractive anomalies on playing performance is unknown

    Acquired and congenital disorders of sung performance: A review.

    Get PDF
    Many believe that the majority of people are unable to carry a tune. Yet, this widespread idea underestimates the singing abilities of the layman. Most occasional singers can sing in tune and in time, provided that they perform at a slow tempo. Here we characterize proficient singing in the general population and identify its neuronal underpinnings by reviewing behavioral and neuroimaging studies. In addition, poor singing resulting from a brain injury or neurogenetic disorder (i.e., tone deafness or congenital amusia) is examined. Different lines of evidence converge in indicating that poor singing is not a monolithic deficit. A variety of poor-singing "phenotypes" are described, with or without concurrent perceptual deficits. In addition, particular attention is paid to the dissociations between specific abilities in poor singers (e.g., production of absolute vs. relative pitch, pitch vs. time accuracy). Such diversity of impairments in poor singers can be traced to different faulty mechanisms within the vocal sensorimotor loop, such as pitch perception and sensorimotor integration

    Progressive Increase in Disinfection Byproducts and Mutagenicity from Source to Tap to Swimming Pool and Spa Water: Impact of Human Inputs

    No full text
    Pools and spas are enjoyed throughout the world for exercise and relaxation. However, there are no previous studies on mutagenicity of disinfected spa (hot tub) waters or comprehensive identification of disinfection byproducts (DBPs) formed in spas. Using 28 water samples from seven sites, we report the first integrated mutagenicity and comprehensive analytical chemistry of spas treated with chlorine, bromine, or ozone, along with pools treated with these same disinfectants. Gas chromatography (GC) with high-resolution mass spectrometry, membrane-introduction mass spectrometry, and GC-electron capture detection were used to comprehensively identify and quantify DBPs and other contaminants. Mutagenicity was assessed by the <i>Salmonella</i> mutagenicity assay. More than 100 DBPs were identified, including a new class of DBPs, bromoimidazoles. Organic extracts of brominated pool/spa waters were 1.8× more mutagenic than chlorinated ones; spa waters were 1.7× more mutagenic than pools. Pool and spa samples were 2.4 and 4.1× more mutagenic, respectively, than corresponding tap waters. The concentration of the sum of 21 DBPs measured quantitatively increased from finished to tap to pool to spa; and mutagenic potency increased from finished/tap to pools to spas. Mutagenic potencies of samples from a chlorinated site correlated best with brominated haloacetic acid concentrations (Br-HAAs) (<i>r</i> = 0.98) and nitrogen-containing DBPs (N-DBPs) (<i>r</i> = 0.97) and the least with Br-trihalomethanes (<i>r</i> = 0.29) and Br–N-DBPs (<i>r</i> = 0.04). The mutagenic potencies of samples from a brominated site correlated best (<i>r</i> = 0.82) with the concentrations of the nine HAAs, Br-HAAs, and Br-DBPs. Human use increased significantly the DBP concentrations and mutagenic potencies for most pools and spas. These data provide evidence that human precursors can increase mutagenic potencies of pools and spas and that this increase is associated with increased DBP concentrations
    corecore