167 research outputs found
Exploiting asynchrony from exact forward recovery for DUE in iterative solvers
This paper presents a method to protect iterative solvers from Detected and Uncorrected Errors (DUE) relying on error detection techniques already available in commodity hardware. Detection operates at the memory page level, which enables the use of simple algorithmic redundancies to correct errors. Such redundancies would be inapplicable under coarse grain error detection, but become very powerful when the hardware is able to precisely detect errors.
Relations straightforwardly extracted from the solver allow to recover lost data exactly. This method is free of the overheads of backwards recoveries like checkpointing, and does not compromise mathematical convergence properties of the solver as restarting would do. We apply this recovery to three widely used Krylov subspace methods, CG, GMRES and BiCGStab, and their preconditioned versions.
We implement our resilience techniques on CG considering scenarios from small (8 cores) to large (1024 cores) scales, and demonstrate very low overheads compared to state-of-the-art solutions. We deploy our recovery techniques either by overlapping them with algorithmic computations or by forcing them to be in the critical path of the application. A trade-off exists between both approaches depending on the error rate the solver is suffering. Under realistic error rates, overlapping decreases overheads from 5.37% down to 3.59% for a non-preconditioned CG on 8 cores.This work has been partially supported by the European Research Council under the European Union's 7th FP, ERC Advanced Grant 321253, and by the Spanish Ministry of Science and Innovation under grant TIN2012-34557. L. Jaulmes has been partially supported by the Spanish Ministry of Education, Culture and Sports under grant FPU2013/06982.
M. Moreto has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la
Cierva postdoctoral fellowship JCI-2012-15047. M. Casas
has been partially supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Co-fund programme of the Marie Curie Actions of the European Union's 7th FP (contract 2013 BP
B 00243).Peer ReviewedPostprint (author's final draft
Impact of chronic stress protocols in learning and memory in rodents: systematic review and meta-analysis
The idea that maladaptive stress impairs cognitive function has been a cornerstone of decades in basic and clinical research. However, disparate findings have reinforced the need to aggregate results from multiple sources in order to confirm the validity of such statement. In this work, a systematic review and meta-analyses were performed to aggregate results from rodent studies investigating the impact of chronic stress on learning and memory. Results obtained from the included studies revealed a significant effect of stress on global cognitive performance. In addition, stressed rodents presented worse consolidation of learned memories, although no significantly differences between groups at the acquisition phase were found. Despite the methodological heterogeneity across studies, these effects were independent of the type of stress, animals' strains or age. However, our findings suggest that stress yields a more detrimental effect on spatial navigation tests' performance. Surprisingly, the vast majority of the selected studies in this field did not report appropriate statistics and were excluded from the quantitative analysis. We have therefore purposed a set of guidelines termed PROBE (Preferred Reporting Orientations for Behavioral Experiments) to promote an adequate reporting of behavioral experiments.This work was funded by the European Commission (FP7) "SwitchBox" (Contract HEALTH-F2-2010-259772) project and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), and by Fundacao Calouste Gulbenkian (Portugal) (Contract grant number: P-139977; project "Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)"). PSM is supported by an FCT fellowship grant, from the PhD-iHES program, with the reference PDE/BDE/113601/2015.info:eu-repo/semantics/publishedVersio
Diaspirin cross-linked hemoglobin (DCLHb) ensures tissue oxygenation during hemodilution below the critical hematocrit
SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery.
Since the publication of the Society for Immunotherapy of Cancer\u27s (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients
Modes of reproduction in the Swedish economic elite: education strategies of the children of the top one per cent
Transcriptome Analysis of the Arabidopsis Megaspore Mother Cell Uncovers the Importance of RNA Helicases for Plant Germline Development
Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant “germline” lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate
A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers"
The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document
Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier
Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts
Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
- …
