2,866 research outputs found

    Application of transparent microperforated panels to acrylic partitions for desktop use: A case study by prototyping

    Get PDF
    There are various measures currently in place to prevent the spread of coronavirus (COVID-19); however, in some cases, these can have an adverse effect on the acoustic environment in buildings. For example, transparent acrylic partitions are often used in eating establishments, meeting rooms, offices, etc., to prevent droplet infection. However, acrylic partitions are acoustically reflective; therefore, reflected sounds may cause acoustic problems such as difficulties in conversation or the leakage of conversation. In this study, we performed a prototyping of transparent acrylic partitions to which a microperforated panel (MPP) was applied for sound absorption while maintaining transparency. The proposed partition is a triple-leaf acrylic partition with a single acrylic sheet without holes between two MPP sheets, as including a hole-free panel is important to prevent possible droplet penetration. The sound absorption characteristics were investigated by measuring the sound absorption in a reverberation room. As the original prototype showed sound absorption characteristics with a gentle peak and low values due to the openings on the periphery, it was modified by closing the openings on the top and sides. The sound absorption performance was improved to some extent when the top and sides were closed, although there remains the possibility of further improvement. For this study, only the sound absorption characteristics were examined in the prototype experiments. The effects during actual use will be the subject of future study

    Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in Rb2{}_{2}Cu2{}_{2}Mo3{}_{3}O12{}_{12}

    Full text link
    We have investigated magnetic properties of Rb2_2Cu2_2Mo3_3O12_{12} powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as J1=138J_1 = -138 K and J2=51J_2 = 51 K (αJ2/J1=0.37\alpha \equiv J_2 / J_1 = -0.37). This value of α\alpha suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large J1J_1 and J2J_2, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb2_2Cu2_2Mo3_3O12_{12} is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure

    Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method

    Full text link
    The mechanism of the Coulomb breakup reactions of the nuclei with neutron-halo structure is investigated in detail. A time-dependent Schr\"odinger equation for the halo neutron is numerically solved by treating the Coulomb field of a target as an external field. The momentum distribution and the post-acceleration effect of the final fragments are discussed in a fully quantum mechanical way to clarify the limitation of the intuitive picture based on the classical mechanics. The theory is applied to the Coulomb breakup reaction of 11^{11}Be + 208^{208}Pb. The breakup mechanism is found to be different between the channels of jπ=12j^{\pi}=\frac{1}{2}^{-} and 32\frac{3}{2}^{-}, reflecting the underlying structure of 11^{11}Be. The calculated result reproduces the energy spectrum of the breakup fragments reasonably well, but explains only about a half of the observed longitudinal momentum difference.Comment: 15 pages,revtex, 9 figures (available upon request

    Mechanical Stress Activates Smad Pathway through PKCδ to Enhance Interleukin-11 Gene Transcription in Osteoblasts

    Get PDF
    BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)δ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress

    Risk factors of fracture following curettage for bone giant cell tumors of the extremities

    Get PDF
    Background: Following curettage of giant cell tumor of bone (GCTB), it is common to fill the cavity with polymethylmethacrylate (PMMA) bone cement, bone allograft, or artificial bone to maintain bone strength; however, there is a 2–14% risk of postoperative fractures. We conducted this retrospective study to clarify the risk factors for fractures after curettage for GCTB of the extremities. Methods: This study included 284 patients with GCTBs of the extremities who underwent curettage at our institutions between 1980 and 2018 after excluding patients whose cavities were not filled with anything or who had additional plate fixation. The tumor cavity was filled with PMMA bone cement alone (n = 124), PMMA bone cement and bone allograft (n = 81), bone allograft alone (n = 63), or hydroxyapatite graft alone (n = 16). Results: Fractures after curettage occurred in 10 (3.5%) patients, and the median time from the curettage to fracture was 3.5 months (interquartile range [IQR], 1.8–8.3 months). The median postoperative follow-up period was 86.5 months (IQR, 50.3–118.8 months). On univariate analysis, patients who had GCTB of the proximal or distal femur (1-year fracture-free survival, 92.5%; 95% confidence interval [CI]: 85.8–96.2) presented a higher risk for postoperative fracture than those who had GCTB at another site (100%; p = 0.0005). Patients with a pathological fracture at presentation (1-year fracture-free survival, 88.2%; 95% CI: 63.2–97.0) presented a higher risk for postoperative fracture than those without a pathological fracture at presentation (97.8%; 95% CI: 95.1–99.0; p = 0.048). Patients who received bone grafting (1-year fracture-free survival, 99.4%; 95% CI: 95.7–99.9) had a lower risk of postoperative fracture than those who did not receive bone grafting (94.4%; 95% CI: 88.7–97.3; p = 0.003). Conclusions: For GCTBs of the femur, especially those with pathological fracture at presentation, bone grafting after curettage is recommended to reduce the risk of postoperative fracture. Additional plate fixation should be considered when curettage and cement filling without bone grafting are performed in patients with GCTB of the femur. This should be specially performed for those patients with a pathological fracture at presentation

    Dynamical Casimir effect for TE and TM modes in a resonant cavity bisected by a plasma sheet

    Full text link
    Parametric photon creation via the dynamical Casimir effect (DCE) is evaluated numerically, in a three-dimensional rectangular resonant cavity bisected by a semiconductor diaphragm (SD), which is irradiated by a pulsed laser with frequency of GHz order. The aim of this paper is to determine some of the optimum conditions required to detect DCE photons relevant to a novel experimental detection system. We expand upon the thin plasma sheet model [Crocce et al., Phys. Rev. A 70 033811 (2004)] to estimate the number of photons for both TE and TM modes at any given SD position. Numerical calculations are performed considering up to 51 inter-mode couplings by varying the SD location, driving period and laser power without any perturbations. It is found that the number of photons created for TE modes strongly depends on SD position, where the strongest enhancement occurs at the midpoint (not near the cavity wall); while TM modes have weak dependence on SD position. Another important finding is the fact that significant photon production for TM111_{111} modes still takes place at the midpoint even for a low laser power of 0.01 micro J/pulse, although the number of TE111_{111} photons decreases almost proportionately with laser power. We also find a relatively wide tuning range for both TE and TM modes that is correlated with the frequency variation of the instantaneous mode functions caused by the interaction between the cavity photons and conduction electrons in the SD excited by a pulsed laser.Comment: 9 pages, 8 figure files; version 2, minor grammatical changes and two references added; version 4 agrees with version in Phys. Rev. A; DOI no. adde

    Thermolabile phenotype of carnitine palmitoyltransferase II variations as a predisposing factor for influenza-associated encephalopathy

    Get PDF
    AbstractTo assess the etiology of influenza-associated encephalopathy (IAE), a surveillance effort was conducted during 2000–2003 in South-West Japan. All fatal and handicapped patients except one (4/34 patients) exhibited a disorder of mitochondrial β-oxidation evoked by the inactivated carnitine palmitoyltransferase II (CPT II) with transiently elevated serum acylcarnitine ratios (C16:0+C18:1)/C2>0.09 during high-grade fever. Analyses of genotypes and allele compositions of CPT II revealed a thermolabile phenotype of compound heterozygotes for [1055T>G/F352C] and [1102G>A/V368I], which shows a higher frequency in IAE patients than healthy volunteers (P<0.025). The thermolabile phenotype of CPT II variations may be a principal genetic background of IAE in Japanese

    11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle

    Get PDF
    OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer307^{307} insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer307^{307} IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer307^{307} IRS1 decreased and pThr308^{308} Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer307^{307} IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer307^{307} IRS1, increases pThr308^{308} Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action

    Optical pumping NMR in the compensated semiconductor InP:Fe

    Full text link
    The optical pumping NMR effect in the compensated semiconductor InP:Fe has been investigated in terms of the dependences of photon energy (E_p), helicity (sigma+-), and exposure time (tau_L) of infrared lights. The {31}P and {115}In signal enhancements show large sigma+- asymmetries and anomalous oscillations as a function of E_p. We find that (i) the oscillation period as a function of E_p is similar for {31}P and {115}In and almost field independent in spite of significant reduction of the enhancement in higher fields. (ii) A characteristic time for buildup of the {31}P polarization under the light exposure shows strong E_p-dependence, but is almost independent of sigma+-. (iii) The buildup times for {31}P and {115}In are of the same order (10^3 s), although the spin-lattice relaxation times (T_1) are different by more than three orders of magnitude between them. The results are discussed in terms of (1) discrete energy spectra due to donor-acceptor pairs (DAPs) in compensated semiconductors, and (2) interplay between {31}P and dipolar ordered indium nuclei, which are optically induced.Comment: 8 pages, 6 figures, submitted to Physical Review
    corecore