133 research outputs found
Fragments in Gaussian Wave-Packet Dynamics with and without correlations
Generalization of Gaussian trial wave functions in quantum molecular dynamics
models is introduced, which allows for long-range correlations characteristic
for composite nuclear fragments. We demonstrate a significant improvement in
the description of light fragments with correlations. Utilizing either type of
Gaussian wave functions, with or without correlations, however, we find that we
cannot describe fragment formation in a dynamic situation. Composite fragments
are only produced in simulations if they are present as clusters in the
substructure of original nuclei. The difficulty is traced to the delocalization
of wave functions during emission. Composite fragments are produced abundantly
in the Gaussian molecular dynamics in the limit .Comment: 22 pages, revtex, 6 postscript figure
Dynamical fluctuations in the one particle density - comparison of different approaches
Diffusion coefficients are obtained from linear response functions and from
the quantal fluctuation dissipation theorem. They are compared with the results
of both the theory of hydrodynamic fluctuations by Landau and Lifschitz as well
as the Boltzmann-Langevin theory. Sum rules related to conservation laws for
total particle number, momentum and energy are demonstrated to hold true for
fluctuations and diffusion coefficients in the quantum case.Comment: 23 pages, Latex, accepted for publication in Nucl. Phys.
Statistical fluctuations for the fission process on its decent from saddle to scission
We reconsider the importance of statistical fluctuations for fission dynamics
beyond the saddle in the light of recent evaluations of transport coefficients
for average motion. The size of these fluctuations are estimated by means of
the Kramers-Ingold solution for the inverted oscillator, which allows for an
inclusion of quantum effects.Comment: 12 pages, Latex, 5 Postscript figures; submitted to PRC e-mail:
[email protected] www home page:
http://www.physik.tu-muenchen.de/tumphy/e/T36/hofmann.htm
Nuclear Shape Fluctuations in Fermi-Liquid Drop Model
Within the nuclear Fermi-liquid drop model, quantum and thermal fluctuations
are considered by use of the Landau-Vlasov-Langevin equation. The spectral
correlation function of the nuclear surface fluctuations is evaluated in a
simple model of an incompressible and irrotational Fermi liquid. The dependence
of the spectral correlation function on the dynamical Fermi-surface distortion
is established. The temperature at which the eigenvibrations become overdamped
is calculated. It is shown that, for realistic values of the relaxation time
parameter and in the high temperature regime, there is a particular eigenmode
of the Fermi liquid drop where the restoring force is exclusively due to the
dynamical Fermi-surface distortion.Comment: 23 pages, revtex, file and 3 figures, accepted for publication in
Nuclear Physics
Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei
Antisymmetrized molecular dynamics (AMD) with quantum branching processes is
reformulated so that it can be applicable to the collisions of heavy nuclei
such as Au + Au multifragmentation reactions. The quantum branching process due
to the wave packet diffusion effect is treated as a random term in a
Langevin-type equation of motion, whose numerical treatment is much easier than
the method of the previous papers. Furthermore a new approximation formula,
called the triple-loop approximation, is introduced in order to evaluate the
Hamiltonian in the equation of motion with much less computation time than the
exact calculation. A calculation is performed for the Au + Au central
collisions at 150 MeV/nucleon. The result shows that AMD almost reproduces the
copious fragment formation in this reaction.Comment: 24 pages, 5 figures embedde
Spinodal decomposition of expanding nuclear matter and multifragmentation
Density fluctuations of expanding nuclear matter are studied within a
mean-field model in which fluctuations are generated by an external stochastic
field. Fluctuations develop about a mean one-body phase-space density
corresponding to a hydrodinamic motion that describes a slow expansion of the
system. A fluctuation-dissipation relation suitable for a uniformly expanding
medium is obtained and used to constrain the strength of the stochastic field.
The distribution of the liquid domains in the spinodal decomposition is
derived. Comparison of the related distribution of the fragment size with
experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.
Nuclear Multifragmentation in the Non-extensive Statistics - Canonical Formulation
We apply the canonical quantum statistical model of nuclear
multifragmentation generalized in the framework of recently proposed Tsallis
non-extensive thermostatistics for the description of nuclear
multifragmentation process. The test calculation in the system with A=197
nucleons show strong modification of the 'critical' behaviour associated with
the nuclear liquid-gas phase transition for small deviations from the
conventional Boltzmann-Gibbs statistical mechanics.Comment: 4 pages, 4 figure
Spinodal instabilities within BUU approach
Using a recently developed method for the inclusion of fluctuation in the BUU
dynamics, we study the self-consistent propagation of inherent thermal noise of
unstable nuclear matter. The large time behaviour of the evolving system
exhibits synergism between fluctuation and non-linearities in a universal
manner which manifest in the appearance of macroscopic structure in the average
description.Comment: 12 pages Revtex. Two figures, uuencoded, are enclosed in a separate
fil
- …
