252 research outputs found
Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17
Lack of mutations within ST7 gene in tumour-derived cell lines and primary epithelial tumours
ST7 is a candidate tumour suppressor gene at human chromosome locus 7q31.1. We have performed mutational analysis of ST7 in a wide-range of cell lines and primary epithelial cancers and detected only one missense change in a breast cancer cell line. Other mutations previously found in cell lines and primary tumours were not evident in our analysis. These results imply that another tumour suppressor gene at this locus may be more important than ST7 in carcinogenesis
Cell Cycle- and Cancer-Associated Gene Networks Activated by Dsg2: Evidence of Cystatin A Deregulation and a Potential Role in Cell-Cell Adhesion
This work was supported by grants from
the National Institutes of Health (Mahoney,
R01AR056067; Riobo, RO1 GM088256). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript
Pathogenic FAM83g palmoplantar keratoderma mutations inhibit the PAWS1::Ck1α association and attenuate wnt signalling
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling. </p
Assessing Noncoding Sequence Variants of GJB2 for Hearing Loss Association.
Involvement of GJB2 noncoding regions in hearing loss (HL) has not been extensively investigated. However, three noncoding
mutations, c.-259C>T, c.-23G>T, and c.-23+1G>A, were reported. Also, c.-684 -675del, of uncertain pathogenicity, was found
upstream of the basal promoter. We performed a detailed analysis of GJB2 noncoding regions in Portuguese HL patients
(previously screened for GJB2 coding mutations and the common GJB6 deletions) and in control subjects, by sequencing the basal
promoter and flanking upstream region, exon 1, and 3’UTR. All individuals were genotyped for c.-684 -675del and 14 SNPs. Novel
variants (c.-731C>T, c.-26G>T, c.∗45G>A, and c.∗985A>T) were found in controls. A hearing individual homozygous for c.-684 -
675del was for the first time identified, supporting the nonpathogenicity of this deletion. Our data indicate linkage disequilibrium
(LD) between SNPs rs55704559 (c.∗168A>G) and rs5030700 (c.∗931C>T) and suggest the association of c.[∗168G;∗931T] allele
with HL. The c.∗168A>G change, predicted to alter mRNA folding, might be involved in HL.info:eu-repo/semantics/publishedVersio
Cellular biomechanics impairment in keratinocytes is associated with a C-terminal truncated desmoplakin: An atomic force microscopy investigation.
In a tissue continuously challenged by mechanical stresses, such as the skin or the heart, cells perceive information about their microenvironment through several adhesive protein complexes and activate cell-signaling events to maintain tissue cohesion. Consequently, alteration of cell adhesion components leads to aberrant assembly of the associated cytoplasmic scaffolding and signaling pathways, which may reflect changes to the tissue physiology and mechanical resistance. Desmoplakin is an essential component of the cell-cell junction, anchoring the desmosomal protein complex to the intermediate filaments (IFs). Inherited mutations in desmoplakin are associated with both heart and skin disease (cardiocutaneous syndrome). In this study, we investigated the mechanical properties of human keratinocytes harboring a cardiocutaneous-associated homozygous C-terminal truncation in desmoplakin (JD-1) compared to a control keratinocyte line (K1). Using Single Cell Force Spectroscopy (SCFS) AFM-based measurements, JD-1 keratinocytes displayed an overall alteration in morphology, elasticity, adhesion capabilities and viscoelastic properties, highlighting the profound interconnection between the adhesome pathways and the IF scaffold.Fondation Leducq, Transatlantic Network of Excellence (14-CVD 03)
Making new genetic diagnoses with old data:iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders
PurposeGiven the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge.MethodsWe tested this hypothesis in the United Kingdom-wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes.ResultsWe are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder-associated genes discovered since our original publication.ConclusionThis study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent-offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.GENETICS in MEDICINE advance online publication, 11 January 2018; doi:10.1038/gim.2017.246.</p
Early inflammation precedes cardiac fibrosis and heart failure in desmoglein 2 murine model of arrhythmogenic cardiomyopathy.
The study of a desmoglein 2 murine model of arrhythmogenic cardiomyopathy revealed cardiac inflammation as a key early event leading to fibrosis. Arrhythmogenic cardiomyopathy (AC) is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure due to abnormalities in the cardiac desmosome. We examined how loss of desmoglein 2 (Dsg2) in the young murine heart leads to development of AC. Apoptosis was an early cellular phenotype, and RNA sequencing analysis revealed early activation of inflammatory-associated pathways in Dsg2-null (Dsg2-/-) hearts at postnatal day 14 (2 weeks) that were absent in the fibrotic heart of adult mice (10 weeks). This included upregulation of iRhom2/ADAM17 and its associated pro-inflammatory cytokines and receptors such as TNFα, IL6R and IL-6. Furthermore, genes linked to specific macrophage populations were also upregulated. This suggests cardiomyocyte stress triggers an early immune response to clear apoptotic cells allowing tissue remodelling later on in the fibrotic heart. Our analysis at the early disease stage suggests cardiac inflammation is an important response and may be one of the mechanisms responsible for AC disease progression
Rapid detection of allelic losses in brain tumours using microsatellite repeat markers and high-performance liquid chromatography
- …
