1,239 research outputs found

    Application of simulation and modelling in managing unplanned healthcare demand

    Get PDF
    Patients who attend Accident and Emergency (A & E) departments with problems that could be dealt with by their general practitioners (GPs) use time and resources of the department that could be otherwise used for patients with more appropriate needs. Hospital managers throughout the world are facing increasing pressure to introduce measures and initiatives to significantly ease the problem of such inappropriate attendances at A&E departments. This study looks at an initiative in which primary care clinicians are used to help deflect patients with non-urgent needs away from A&E. Simulation and modelling was used to assess the impact that this initiative would have on A&E workflow. The results suggest that the deflection of patients attending A&E with non-urgent needs may reduce the time spent in A&E by all patients attending A&E

    Geometric, electronic properties and the thermodynamics of pure and Al--doped Li clusters

    Get PDF
    The first--principles density functional molecular dynamics simulations have been carried out to investigate the geometric, the electronic, and the finite temperature properties of pure Li clusters (Li10_{10}, Li12_{12}) and Al--doped Li clusters (Li10_{10}Al, Li10_{10}Al2_2). We find that addition of two Al impurities in Li10_{10} results in a substantial structural change, while the addition of one Al impurity causes a rearrangement of atoms. Introduction of Al--impurities in Li10_{10} establishes a polar bond between Li and nearby Al atom(s), leading to a multicentered bonding, which weakens the Li--Li metallic bonds in the system. These weakened Li--Li bonds lead to a premelting feature to occur at lower temperatures in Al--doped clusters. In Li10_{10}Al2_2, Al atoms also form a weak covalent bond, resulting into their dimer like behavior. This causes Al atoms not to `melt' till 800 K, in contrast to the Li atoms which show a complete diffusive behavior above 400 K. Thus, although one Al impurity in Li10_{10} cluster does not change its melting characteristics significantly, two impurities results in `surface melting' of Li atoms whose motions are confined around Al dimer.Comment: 9 pages, 7 figure

    Turbulent Combustion of Polydisperse Evaporating Sprays with Droplet Crossing: Eulerian Modeling and Validation in the Infinite Knudsen Limit

    Get PDF
    The accurate simulation of the dynamics of polydisperse evaporating sprays in unsteady gaseous flows with large-scale vortical structures is both a crucial issue for industrial applications and a challenge for modeling and scientific computing. The difficulties encountered by the usual Lagrangian approaches make the use of Eulerian models attractive, aiming at a lower cost and an easier coupling with the carrier gaseous phase. Among these models, the multi-fluid model allows for a detailed description of the polydispersity and size-velocity correlations for droplets of various sizes. The purpose of the present study is twofold. First, we extend the multi-fluid model in order to cope with crossing droplet trajectories by using the quadrature method of moments in velocity phase space conditioned by size. We identify the numerical difficulties and provide dedicated numerical schemes in order to preserve the velocity moment space. Second, we conduct a comparison study and demonstrate the capability of such an approach to capture the dynamics of an evaporating polydisperse spray in a 2-D free jet configuration. We evaluate the accuracy and computational cost of Eulerian models and related discretization schemes vs. Lagrangian solvers and show that, even for finite Stokes number, the standard Eulerian multi-fluid model can be accurate at reasonable cost

    Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars

    Get PDF
    The Sheepbed mudstone, Yellowknife Bay formation, Gale crater, represents an ancient lakebed now exhumed and exposed on the Martian surface. The mudstone has four diagenetic textures, including a suite of early diagenetic nodules, hollow nodules, and raised ridges and later diagenetic light-toned veins that crosscut those features. In this study, we describe the distribution and characteristics of the raised ridges, a network of short spindle-shaped cracks that crosscut bedding, do not form polygonal networks, and contain two to four layers of isopachous, erosion-resistant cement. The cracks have a clustered distribution within the Sheepbed member and transition laterally into concentrations of nodules and hollow nodules, suggesting that these features formed penecontemporaneously. Because of the erosion-resistant nature of the crack fills, their three-dimensional structure can be observed. Cracks that transition from subvertical to subhorizontal orientations suggest that the cracks formed within the sediment rather than at the surface. This observation and comparison to terrestrial analogs indicate that these are syneresis cracks—cracks that formed subaqueously. Syneresis cracks form by salinity changes that cause sediment contraction, mechanical shaking of sediment, or gas production within the sediment. Examination of diagenetic features within the Sheepbed mudstone favors a gas production mechanism, which has been shown to create a variety of diagenetic morphologies comparable to the raised ridges and hollow nodules. The crack morphology and the isopachous, layered cement fill show that the cracks were filled in the phreatic zone and that the Sheepbed mudstone remained fluid saturated after deposition and through early burial and lithification

    Constraining the Texture and Composition of Pore-Filling Cements at Gale Crater, Mars

    Get PDF
    The Mars Science Laboratory (MSL) rover Curiosity has encountered a wide variety of sedimentary rocks deposited in fluvio-lacuestrine sequences at the base of Gale Crater. The presence of sedimentary rocks requires that initial sediments underwent diagenesis and were lithified. Lithification involves sediment compaction, cementation, and re-crystallization (or authigenic) processes. Analysis of the texture and composition of the cement can reveal the environmental conditions when the cements were deposited, enabling better understanding of early environments present within Gale Crater. The first step in lithification is sediment compaction. The Gale crater sediments do not show evidence for extensive compaction prior to cementation; the Sheepbed mudstone in Yellowknife Bay (YKB) has preserved void spaces ("hollow nodules"), indicating that sediments were cemented around the hollow prior to compaction, and conglomerates show imbrication, indicating minimal grain reorganization prior to lithification. Furthermore, assuming the maximum burial depth of these sediments is equivalent to the depth of Gale Crater, the sediments were never under more than 1 kb of pressure, and assuming a 15 C/km thermal gradient in the late Noachian, the maximum temperature of diagenesis would have been approximately 75 C. This is comparable to shallow burial diagenetic conditions on Earth. The cementation and recrystallization components of lithification are closely intertwined. Cementation describes the precipitation of minerals between grains from pore fluids, and recrystallization (or authigenesis) is when the original sedimentary mineral grains are altered into secondary minerals. The presence of authigenic smectites and magnetite in the YKB formation suggests that some recrystallization has taken place. The relatively high percentage of XRD-amorphous material (25-40%) detected by CheMin suggests that this recrystallization may be limited in scope, and therefore may not contribute significantly to the cementing material. However, relatively persistent amorphous components could exist in the Martian environment (e.g. amorphous MgSO4), so recrystallization, including loss of crystallinity, cannot yet be excluded as a method of cementation. In order to describe the rock cementation, both the rock textures and their composition must be considered. Here, we attempt to summarize the current understanding of the textural and compositional aspects of the cement across the rocks analyzed by Curiosity to this point

    The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact

    Get PDF
    The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiositys traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit

    Sorption-Desorption Behavior of Atrazine on Soils Subjected to Different Organic Long-Term Amendments

    Get PDF
    Sorption of atrazine on soils subjected to three different organic amendments was measured using a batch equilibrium technique. A higher K(F) value (2.20 kg(-1)(mg L(-1))(-)N) was obtained for soil fertilized with compost, which had a higher organic matter (OM) content. A correlation between the K(Foc) values and the percentage of aromatic carbon in OM was observed. The highest K(Foc) value was obtained for the soil with the highest aromatic content. Higher aromatic content results in higher hydrophobicity of OM, and hydrophobic interactions play a key role in binding of atrazine, On the other hand, the soil amended with farmyard manure had a higher content of carboxylic units, which could be responsible for hydrogen bonding between atrazine and OR Dominance of hydrogen bonds compared to hydrophobic interactions can be responsible for the lower desorption capacity observed with the farmyard manure soil, The stronger hydrogen bonding can reduce the leaching of atrazine into drinking water resources and runoff to rivers and other surface waters

    Using Outcrop Exposures on the Road to Yellowknife Bay to Build a Stratigraphic Column, Gale Crater, Mars

    Get PDF
    Since landing in Gale Crater on August 5, 2012, the Curiosity rover has driven 450 m east, descending approximately 15 m in elevation from the Bradbury landing site to Yellowknife Bay. Outcrop exposure along this drive has been discontinuous, but isolated outcrops may represent windows into underlying inplace stratigraphy. This study presents an inventory of outcrops targeted by Curiosity (Figs. 1-2), grouped by lithological properties observed in Mastcam and Navcam imagery. Outcrop locations are placed in a stratigraphic context using orbital imagery and first principles of stratigraphy. The stratigraphic models presented here represent an essential first step in understanding the relative age relationships of lithological units encountered at the Curiosity landing site. Such observations will provide crucial context for assessing habitability potential of ancient Gale crater environments and organic matter preservation

    Improved measurement of CP-violating parameters in rho+rho- decays

    Full text link
    We present a measurement of the CP-violating asymmetry in rho+rho- decays using 535 million BBbar pairs collected with the Belle detector at the KEKB e+e- collider. We measure CP-violating coefficients A = 0.16 +- 0.21(stat) +- 0.07 (syst) and S = 0.19 +- 0.30(stat) +- 0.07 (syst}. These values are used to determine the unitarity triangle angle phi_2 using an isospin analysis; the solution consistent with Standard Model lies in the range 53 < phi_2 < 114 deg. at 90 C.L.Comment: 6 pages, 4 figures, presented at JPS/DPF 2006 (Added KEK, BELLE preprint numbers, submitted to PRD(RC)

    Habitability Assessment at Gale Crater: Implications from Initial Results

    Get PDF
    Mars Science Laboratory has made measurements that contribute to our assessment of habitability potential at Gale Crater. Campaign organization into a consistent set of measurable parameters allows us to rank the relative habitability potential of sites we study, ultimately laying a foundation for a global context inclusive of past and future Mars mission observations. Chemical, physical, geological and geographic attributes shape environments. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential. Metrics for habitability assessment based on field work at sites sharing features analogous to Mars have previously been suggested. Grouping these metrics helps us to develop an index for their application to habitability assessment. The index is comprised of the weighted values for four groups of parameters, the habitability threshold for each is to be determined
    corecore