49 research outputs found

    Chemical-genetic attenuation of focal neocortical seizures.

    Get PDF
    Focal epilepsy is commonly pharmacoresistant, and resective surgery is often contraindicated by proximity to eloquent cortex. Many patients have no effective treatment options. Gene therapy allows cell-type specific inhibition of neuronal excitability, but on-demand seizure suppression has only been achieved with optogenetics, which requires invasive light delivery. Here we test a combined chemical-genetic approach to achieve localized suppression of neuronal excitability in a seizure focus, using viral expression of the modified muscarinic receptor hM4Di. hM4Di has no effect in the absence of its selective, normally inactive and orally bioavailable agonist clozapine-N-oxide (CNO). Systemic administration of CNO suppresses focal seizures evoked by two different chemoconvulsants, pilocarpine and picrotoxin. CNO also has a robust anti-seizure effect in a chronic model of focal neocortical epilepsy. Chemical-genetic seizure attenuation holds promise as a novel approach to treat intractable focal epilepsy while minimizing disruption of normal circuit function in untransduced brain regions or in the absence of the specific ligand

    Molecular characterization of Miraflores peach variety and relatives using SSRs

    Get PDF
    The definitive version is published in: http://www.sciencedirect.com/science/journal/03044238Some traditional peach varieties, originated from the region of Aragón (Spain), were analysed by SSRs (Simple Sequence Repeats). The aim of this research was to characterize 19 clones related to ‘Miraflores’ variety, with unknown pedigrees, to assess their genetic diversity and to elucidate their possible relationships with 10 traditional peach varieties. Twenty SSR primer pairs with high levels of polymorphism, which have been previously developed for peach, were used in this study. A total of 46 alleles were obtained for all the microsatellites studied, ranging from one to six alleles per locus, with a mean value of 2.3 alleles per locus. Fourteen SSRs were polymorphic in the set of varieties studied and permitted to distinguish 16 different genotypes out of the 30 initially studied, although fourteen ‘Miraflores’ clones showed identical gel profiles. The genetic distance matrix was used to construct Neighbor joining cluster and to perform principal coordinate analysis which allowed the arrangement of all the genotypes according to their genetic relationships. The genetic relationships among these traditional peach varieties, and in particular among ‘Miraflores’ clones are discussed. The obtained results confirm that microsatellite markers are very useful for these purposes.We are thankful to T.N. Zhebentyayeva and G.L. Reighard for helpful comments on the manuscript. This research was funded by CICYT (Comisión Interministerial de Ciencia y Tecnología, AGL2002-04219 and AGL 2005-05533), INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, RF03-014-C2), Bilateral Spain-France (HF03-273) and DGA (A28, A44) projects and co-funded by the European Regional Development Fund. M. Bouhadida was supported by a fellowship from the AECI (Agencia Española de Cooperación Internacional) of the Spanish Ministry of Foreign Affairs.Peer reviewe

    SHANK3 controls maturation of social reward circuits in the VTA.

    Get PDF
    Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of autism spectrum disorder. How SHANK3 insufficiency affects specific neural circuits and how this is related to specific symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the ventral tegmental area of mice. We identified dopamine (DA) and GABA cell-type-specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors mGluR1 during the first postnatal week restored DA neuron excitatory synapse transmission and partially rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired ventral tegmental area function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy

    Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys

    Get PDF
    The chemogenetic technology designer receptors exclusively activated by designer drugs (DREADDs) afford remotely reversible control of cellular signaling, neuronal activity and behavior. Although the combination of muscarinic-based DREADDs with clozapine-N-oxide (CNO) has been widely used, sluggish kinetics, metabolic liabilities and potential off-target effects of CNO represent areas for improvement. Here, we provide a new high-affinity and selective agonist deschloroclozapine (DCZ) for muscarinic-based DREADDs. Positron emission tomography revealed that DCZ selectively bound to and occupied DREADDs in both mice and monkeys. Systemic delivery of low doses of DCZ (1 or 3 μg per kg) enhanced neuronal activity via hM3Dq within minutes in mice and monkeys. Intramuscular injections of DCZ (100 μg per kg) reversibly induced spatial working memory deficits in monkeys expressing hM4Di in the prefrontal cortex. DCZ represents a potent, selective, metabolically stable and fast-acting DREADD agonist with utility in both mice and nonhuman primates for a variety of applications

    Experience-dependent rewiring of specific inhibitory connections in adult neocortex.

    Get PDF
    Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%-45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits

    Experience-dependent rewiring of specific inhibitory connections in adult neocortex.

    Get PDF
    Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%-45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits

    Chemical–genetic seizure silencing—unlocking the potential

    No full text

    Gene-environment interaction in a conditional NMDAR-knockout model of schizophrenia

    No full text
    Interactions between genetic and environmental risk factors take center stage in the pathology of schizophrenia. We assessed if the stressor of reduced environmental enrichment applied in adulthood provokes deficits in the positive, negative or cognitive symptom domains of schizophrenia in a mouse line modeling NMDA-receptor (NMDAR) hypofunction in forebrain inhibitory interneurons (Grin1 ΔPpp1r2 ). We find that Grin1 ΔPpp1r2 mice, when group-housed in highly enriched cages, appear largely normal across a wide range of schizophrenia-related behavioral tests. However, they display various short-term memory deficits when exposed to minimal enrichment. This demonstrates that the interaction between risk genes causing NMDA-receptor hypofunction and environmental risk factors may negatively impact cognition later in life

    The columnar and laminar organization of inhibitory connections to neocortical excitatory cells.

    No full text
    The cytoarchitectonic similarities of different neocortical regions have given rise to the idea of 'canonical' connectivity between excitatory neurons of different layers within a column. It is unclear whether similarly general organizational principles also exist for inhibitory neocortical circuits. Here we delineate and compare local inhibitory-to-excitatory wiring patterns in all principal layers of primary motor (M1), somatosensory (S1) and visual (V1) cortex, using genetically targeted photostimulation in a mouse knock-in line that conditionally expresses channelrhodopsin-2 in GABAergic neurons. Inhibitory inputs to excitatory neurons derived largely from the same cortical layer within a three-column diameter. However, subsets of pyramidal cells in layers 2/3 and 5B received extensive translaminar inhibition. These neurons were prominent in V1, where they might correspond to complex cells, less numerous in barrel cortex and absent in M1. Although inhibitory connection patterns were stereotypical, the abundance of individual motifs varied between regions and cells, potentially reflecting functional specializations

    Gene-environment interaction in a conditional NMDAR-knockout model of schizophrenia

    No full text
    Interactions between genetic and environmental risk factors take center stage in the pathology of schizophrenia. We assessed if the stressor of reduced environmental enrichment applied in adulthood provokes deficits in the positive, negative or cognitive symptom domains of schizophrenia in a mouse line modeling NMDA-receptor (NMDAR) hypofunction in forebrain inhibitory interneurons (Grin1 ΔPpp1r2 ). We find that Grin1 ΔPpp1r2 mice, when group-housed in highly enriched cages, appear largely normal across a wide range of schizophrenia-related behavioral tests. However, they display various short-term memory deficits when exposed to minimal enrichment. This demonstrates that the interaction between risk genes causing NMDA-receptor hypofunction and environmental risk factors may negatively impact cognition later in life
    corecore