52 research outputs found

    Independent component analysis for the identification of sources of variation on an industrial nirs application

    Full text link
    A Near Infrared Spectroscopy (NIRS) industrial application was developed by the LPF-Tagralia team, and transferred to a Spanish dehydrator company (Agrotécnica Extremeña S.L.) for the classification of dehydrator onion bulbs for breeding purposes. The automated operation of the system has allowed the classification of more than one million onion bulbs during seasons 2004 to 2008 (Table 1). The performance achieved by the original model (R2=0,65; SEC=2,28ºBrix) was enough for qualitative classification thanks to the broad range of variation of the initial population (18ºBrix). Nevertheless, a reduction of the classification performance of the model has been observed with the passing of seasons. One of the reasons put forward is the reduction of the range of variation that naturally occurs during a breeding process, the other is the variations in other parameters than the variable of interest but whose effects would probably be affecting the measurements [1]. This study points to the application of Independent Component Analysis (ICA) on this highly variable dataset coming from a NIRS industrial application for the identification of the different sources of variation present through seasons

    Two Novel Methods For The Determination Of The Number Of Components In Independent Components Analysis Models

    Get PDF
    Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance

    Comparison of multivariate calibration techniques applied to experimental NIR data sets

    Get PDF
    The present study compares the performance of different multivariate calibration techniques applied to four near-infrared data sets when test samples are well within the calibration domain. Three types of problems are discussed: the nonlinear calibration, the calibration using heterogeneous data sets, and the calibration in the presence of irrelevant information in the set of predictors. Recommendations are derived from the comparison, which should help to guide a nonchemometrician through the selection of an appropriate calibration method for a particular type of calibration data. A flexible methodology is proposed to allow selection of an appropriate calibration technique for a given calibration problem.54460862

    Independent Components Analysis with the JADE algorithm

    Full text link
    Independent Components Analysis (ICA) is a relatively recent method, with an increasing number of applications in chemometrics. Of the many algorithms available to compute ICA parameters, the Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm is presented here in detail. Three examples are used to illustrate its performance, and highlight the differences between ICA results and those of other methods, such as Principal Components Analysis. A comparison with Parallel Factor Analysis (PARAFAC) is also presented in the case of a three-way data set to show that ICA applied on an unfolded high-order array can give results comparable with those of PARAFAC. (c) 2013 Elsevier Ltd. All rights reserved

    The Mahalanobis distance

    Full text link
    corecore