265 research outputs found

    Oxidation of Palladium-Chromium Alloys for High Temperature Applications

    Get PDF
    An alloy consisting of Pd with 13 wt % Cr is a promising material for high temperature applications. High temperature performance is degraded by the oxidation of the material, which is more severe in the fine wires and thin films used for sensor applications than in the bulk. The present study was undertaken to improve our understanding of the physical and chemical changes occurring at these temperatures and to identify approaches to limit oxidation of the alloy. The alloy was studied in both ribbon and wire forms. Ribbon samples were chosen to examine the role of grain boundaries in the oxidation process because of the convenience of handling for the oxidation studies. Wire samples 25 microns in diameter which are used in resistance strain gages were studied to correlate chemical properties with observed electrical, physical, and structural properties. Overcoating the material with a metallic Cr film did prevent the segregation of Pd to the surface; however, it did not eliminate the oxidation of the alloy

    Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    Get PDF
    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems

    Attachment of Free Filament Thermocouples for Temperature Measurements on Ceramic Matrix Composites

    Get PDF
    At the NASA Lewis Research Center, a new installation technique utilizing convoluted wire thermocouples (TC's) was developed and proven to produce very good adhesion on CMC's, even in a burner rig environment. Because of their unique convoluted design, such TC's of various types and sizes adhere to flat or curved CMC specimens with no sign of delamination, open circuits, or interactions-even after testing in a Mach 0.3 burner rig to 1200 C (2200 F) for several thermal cycles and at several hours at high temperatures. Large differences in thermal expansion between metal thermocouples and low-expansion materials, such as CMC's, normally generate large stresses in the wires. These stresses cause straight wires to detach, but convoluted wires that are bonded with strips of coating allow bending in the unbonded portion to relieve these expansion stresses

    Characterization of Fibroblast Growth Factor Receptor 1 in Small-Cell Lung Cancer

    Get PDF
    Introduction:There remains a significant therapeutic need for small-cell lung cancer (SCLC). We and others have reported high frequency of copy number gains in cytogenetic bands encoding fibroblast growth factor receptor 1 (FGFR1) in SCLC tumors and cell lines.Methods:Thirteen SCLC cell lines and 68 SCLC patient tumor samples were studied for FGFR1 amplification. Growth inhibition assays were performed using PD173074, a pan-FGFR inhibitor to determine the correlation between FGFR1 expression and drug sensitivity.Results:We did not detect FGFR1 mutations in SCLC cell lines. Focal amplification of FGFR1 gene was found in five tumor samples (7%), with high-level focal amplification in only one tumor sample (1%). Amplification owing to polysomy of chromosome 8, where FGFR1 locates, was observed in 22 tumor samples (32%). There was no correlation between FGFR1 gene copy number and messenger RNA expression or protein expression in SCLC cells. FGFR inhibitor sensitivity correlated with FGFR1 copy number determined by real-time polymerase chain reaction assay (r= −0.79; p = 0.01).Conclusion:FGFR1 gene mutations and focal amplification are rare in SCLC, but polysomy of chromosome 8 is relatively common. FGFR1 copy number gain predicts sensitivity to FGFR inhibition, and FGFR expression correlates inversely with chemosensitivity

    Sensor Lead Wires Positioned on SiC-based Monolithic Ceramic and Fiber- reinforced Ceramic Matrix Composite Subcomponents with Flat and Curved Surfaces

    Get PDF
    There is strong interest in the development of silicon carbide-based monolithic ceramic and composite materials and components for demanding, high-temperature applications. Thorough characterization of material properties, including high-temperature testing under simulated or actual operating conditions, is a high priority for programs involved in developing these silicon carbide- (SiC) based materials and components. Members of the Sensors and Electronics Technology Branch at the NASA Lewis Research Center are developing minimally intrusive methods of measuring the properties (such as the surface temperature, strain, and heat flux characteristics) of components and subelements that are being tested or operated in hostile, high-temperature environments. Their primary goal is to instrument the test article or operating component with durable sensors that have a minimal effect on test conditions such as the gas flow across the surface of the item and the material response (including the through-thickness conduction of heat). Therefore, the main thrust of their work has been the development of thin-film sensors (e.g., thermocouples or strain gauges) for use on various advanced material test articles, including SiC/SiC composite components. There was a need for a better method of securing sensor lead wires on SiC-based components and subelements that would be tested at temperatures to 1000 C (or higher), to enhance the durability of the overall minimally intrusive sensor system. To address this need, Lewis researchers devised an alternative approach for positioning the sensor lead wires (which are connected to the thin-film sensors) on SiC or SiC/SiC components. A reaction-forming method of joining was used to strongly bond hoop-shaped monolithic SiC and SiC/SiC composite attachments of various sizes to both flat and curved surfaces of SiC/SiC composite subelements (see the photos). This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed at Lewis for the joining of SiC-based ceramics and fiber-reinforced composites

    Liquid Flyback Booster Pre-Phase A Study Assessment

    Get PDF
    Mw concept of a flyback booster has been around since early in the Shuttle program. The original two-stage Shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current Shuttle uses two Redesigned Solid Rocket Motors (RSRMs), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBBs. The study provides an expansion of the recommendations made during the during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reuction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBBs requires a commitment to the Shuttle program for 20 to 30 years. LFBBs also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic since them we no intact abort capabilities during the burn of the RSRMS. The performance goal of the LFBBs was to lift a fully loaded Orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the Shuttle. In addition, a final benefit is the availability of growth paths for applications other than the Shuttle

    Comparative analysis of eating quality and yield of selected non-waxy red-pericarp aromatic rice mutants

    Get PDF
    Red-pericarp variety Kuanfu waxy aroma is highly valued for its grain quality in Taiwan, but it has undesirable traits of awned rough grain and taller plant height.  The present study compared the palatability of cooked rice grains and yields of Kuanfu waxy aroma and its ten NaN3-induced awnless non-waxy aromatic M6-generation mutants developed through single-seed-descent selection (from M2 to M6 generation) plus a non-waxy aromatic rice variety TNG71 (reference variety with good eating quality).  The palatability of cooked rice grains was assessed by using a rice taste meter.  Results indicated that all the mutants exhibited awnless grain traits and reduced plant height.  PCR analyses confirmed the expression of fragrance (fgr) gene in these mutants.  Significant differences in the palatability of cooked rice were also observed among the mutants with AM-425 (70.45) and AM-430 (73.75) having higher palatability scores than TNG71 (69.32).  Mutant AM-425 also had higher aroma sensory score (1.33) than TNG71 (1.17).  Two years yield trials indicated that AM-425 and AM-430 significantly out-yielded Kuanfu waxy aroma and can be recommended to rice growers.

    Dynamic phase transitions in thin ferromagnetic films

    Full text link
    Monte Carlo simulations have been used to investigate the dynamic phase behavior of a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry. Studies of the field amplitude, frequency and temperature dependence show dynamic phase transitions in films subject to a pulsed oscillatory external field. Thin films with competing surface fields show separate and distinct dynamic phase transitions for the bulk and surface layers of the film. Between the two transitions, a mixed state with coexisting dynamically ordered and dynamically disordered phases is observed in the film. In contrast, the free film with no surface fields shows a single dynamic phase transition as in a bulk system.Comment: 25 pages including figures in pdf format, to be published in PR

    Lack of complex I is associated with oncocytic thyroid tumours

    Get PDF
    Oncocytic tumours are characterised by hyperproliferation of mitochondria. We immunohistochemically analysed all enzymes of the oxidative phosphorylation system in 19 oncocytic thyroid tumours. A specific lack of complex I was detected, which was expressed at <5% of the level determined in surrounding non-cancerous tissue
    • …
    corecore