732 research outputs found

    Correlations in excited states of local Hamiltonians

    Full text link
    Physical properties of the ground and excited states of a kk-local Hamiltonian are largely determined by the kk-particle reduced density matrices (kk-RDMs), or simply the kk-matrix for fermionic systems---they are at least enough for the calculation of the ground state and excited state energies. Moreover, for a non-degenerate ground state of a kk-local Hamiltonian, even the state itself is completely determined by its kk-RDMs, and therefore contains no genuine >k{>}k-particle correlations, as they can be inferred from kk-particle correlation functions. It is natural to ask whether a similar result holds for non-degenerate excited states. In fact, for fermionic systems, it has been conjectured that any non-degenerate excited state of a 2-local Hamiltonian is simultaneously a unique ground state of another 2-local Hamiltonian, hence is uniquely determined by its 2-matrix. And a weaker version of this conjecture states that any non-degenerate excited state of a 2-local Hamiltonian is uniquely determined by its 2-matrix among all the pure nn-particle states. We construct explicit counterexamples to show that both conjectures are false. It means that correlations in excited states of local Hamiltonians could be dramatically different from those in ground states. We further show that any non-degenerate excited state of a kk-local Hamiltonian is a unique ground state of another 2k2k-local Hamiltonian, hence is uniquely determined by its 2k2k-RDMs (or 2k2k-matrix)

    From Ground States to Local Hamiltonians

    Full text link
    Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space VV to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on VV is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have VV satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.Comment: 11 pages, 2 figures, to be published in PR

    No-go Theorem for One-way Quantum Computing on Naturally Occurring Two-level Systems

    Full text link
    One-way quantum computing achieves the full power of quantum computation by performing single particle measurements on some many-body entangled state, known as the resource state. As single particle measurements are relatively easy to implement, the preparation of the resource state becomes a crucial task. An appealing approach is simply to cool a strongly correlated quantum many-body system to its ground state. In addition to requiring the ground state of the system to be universal for one-way quantum computing, we also want the Hamiltonian to have non-degenerate ground state protected by a fixed energy gap, to involve only two-body interactions, and to be frustration-free so that measurements in the course of the computation leave the remaining particles in the ground space. Recently, significant efforts have been made to the search of resource states that appear naturally as ground states in spin lattice systems. The approach is proved to be successful in spin-5/2 and spin-3/2 systems. Yet, it remains an open question whether there could be such a natural resource state in a spin-1/2, i.e., qubit system. Here, we give a negative answer to this question by proving that it is impossible for a genuinely entangled qubit states to be a non-degenerate ground state of any two-body frustration-free Hamiltonian. What is more, we prove that every spin-1/2 frustration-free Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit states, a stronger result that is interesting independent of the context of one-way quantum computing.Comment: 5 pages, 1 figur

    Ground-State Spaces of Frustration-Free Hamiltonians

    Full text link
    We study the ground-state space properties for frustration-free Hamiltonians. We introduce a concept of `reduced spaces' to characterize local structures of ground-state spaces. For a many-body system, we characterize mathematical structures for the set Θk\Theta_k of all the kk-particle reduced spaces, which with a binary operation called join forms a semilattice that can be interpreted as an abstract convex structure. The smallest nonzero elements in Θk\Theta_k, called atoms, are analogs of extreme points. We study the properties of atoms in Θk\Theta_k and discuss its relationship with ground states of kk-local frustration-free Hamiltonians. For spin-1/2 systems, we show that all the atoms in Θ2\Theta_2 are unique ground states of some 2-local frustration-free Hamiltonians. Moreover, we show that the elements in Θk\Theta_k may not be the join of atoms, indicating a richer structure for Θk\Theta_k beyond the convex structure. Our study of Θk\Theta_k deepens the understanding of ground-state space properties for frustration-free Hamiltonians, from a new angle of reduced spaces.Comment: 23 pages, no figur

    Exogenous testosterone decreases men’s sensitivity to vocal cues of male dominance

    Get PDF
    Assessing dominance is important for effective social interactions, and prior research suggests that testosterone is associated with men's dominance perceptions. The present study tested for a causal effect of exogenous testosterone on men's sensitivity to vocal cues of other men's dominance, an important parameter in male-male competition across species. One hundred and thirty-nine Chinese men received a single dose (150 mg) of testosterone or placebo gel in a double-blind, placebo-controlled, between-participant design. Participants reported their own dominance and judged other men's dominance from voices. Men's dominance sensitivity was significantly weaker in the testosterone group compared to those in the placebo group. Moreover, men's dominance sensitivity was negatively associated with their self-reported dominance in our Chinese sample, consistent with findings from Western populations. These results indicate that exogenous testosterone has a causal effect in decreasing men's dominance sensitivity, consistent with the Challenge Hypothesis, suggesting that the fluctuation of testosterone concentration mediates individuals' behaviors. Additionally, the present study could motivate further work on vocal assessment in the context of competition in humans and other species

    Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancer-associated variants.

    Get PDF
    A locus on human chromosome 11q23 tagged by marker rs3802842 was associated with colorectal cancer (CRC) in a genome-wide association study; this finding has been replicated in case-control studies worldwide. In order to identify biologic factors at this locus that are related to the etiopathology of CRC, we used microarray-based target selection methods, coupled to next-generation sequencing, to study 103 kb at the 11q23 locus. We genotyped 369 putative variants from 1,030 patients with CRC (cases) and 1,061 individuals without CRC (controls) from the Ontario Familial Colorectal Cancer Registry. Two previously uncharacterized genes, COLCA1 and COLCA2, were found to be co-regulated genes that are transcribed from opposite strands. Expression levels of COLCA1 and COLCA2 transcripts correlate with rs3802842 genotypes. In colon tissues, COLCA1 co-localizes with crystalloid granules of eosinophils and granular organelles of mast cells, neutrophils, macrophages, dendritic cells and differentiated myeloid-derived cell lines. COLCA2 is present in the cytoplasm of normal epithelial, immune and other cell lineages, as well as tumor cells. Tissue microarray analysis demonstrates the association of rs3802842 with lymphocyte density in the lamina propria (p = 0.014) and levels of COLCA1 in the lamina propria (p = 0.00016) and COLCA2 (tumor cells, p = 0.0041 and lamina propria, p = 6 × 10(-5)). In conclusion, genetic, expression and immunohistochemical data implicate COLCA1 and COLCA2 in the pathogenesis of colon cancer. Histologic analyses indicate the involvement of immune pathways

    The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing-receptor (CaSR) mutation:relevance to autosomal dominant hypocalcemia type 1 (ADH1)

    Get PDF
    Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum parathyroid hormone (PTH) concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalise the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells and the effect of NPS 2143 on their intracellular calcium responses determined by flow cytometry. NPS 2143 was also administered as a single intraperitoneal bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1, and improve the hypocalcemia associated with this disorder

    HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree

    Get PDF
    Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches
    corecore