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Abstract

In survival analysis, time-dependent covariates are usually present as longitudinal data

collected periodically and measured with error. The longitudinal data can be assumed to

follow a linear mixed effect model and Cox regression models may be used for modelling

of survival events. The hazard rate of survival times may depend on the underlying time-

dependent covariates measured with error, which may be described by random effects.

Most existing methods proposed for such models assume a parametric distribution

assumption on the random effects and specify a normally distributed error term for

the linear mixed effect model. These assumptions may not be always valid in practice.

In this paper we propose a new likelihood method for Cox regression models with

error-contaminated time-dependent covariates. The proposed method does not require
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any parametric distribution assumptions on the random effects and random errors.

Asymptotic properties for parameter estimators are provided. Simulation results show

that the proposed method is more efficient than the existing methods.

Key words: Censored data; Longitudinal measurements; Partial likelihood; Propor-

tional hazard model.

1 Introduction

Cox proportional hazard model (Cox, 1972) is widely used to study the relationship

between survival events and time-dependent or time-independent covariates, which as-

sumes that the failure time hazard rate function λ(s) relates to covariates through

λ(s) = λ0(s) exp(γW (s)).

To implement the above Cox model most existing methods require the time dependent

covariate process W (s) to be fully observed. In practice, however, W (s) is measured

intermittently and very likely with error. In other words, we only observe longitudinal

measurements W̃j at some time points tj, j = 1, · · · ,m, where W̃j = W (tj) + εj and εj

is the error term. Substituting mis-measured values for true covariates in Cox models

can lead to very biased estimates (Prentice, 1982).

Recent studies focus on joint modelling of survival events and longitudinal measure-

ments. The latent time-dependent process W (s) is usually assumed to be W (s) =

ω0 + ω1s, which may be generalized to a general polynomial in time. Here ω0 and ω1

are random effects. Such assumptions can be used to study the effects of potentially
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mis-measured time-dependent covariates on the failure time. Many existing methods

(DeGruttola and Tu, 1994; Faucett and Thomas, 1996; Henderson et.al., 2000; Wulfson

and Tsiatis, 1997) assumed that the random effects and the random error follow Gaus-

sian distributions, and EM algorithms or Bayesian approaches were used to deal with

the unobserved covariate process W (s). However, the normal distribution assumption

on random effects and random errors may not be always true in practice. Misspecifi-

cation of the distributions of random effects or random errors can lead to very biased

estimates (Tisiatis and Davidian, 2001; Song and Huang, 2005; Wang, 2006).

Hu et.al. (1998) and Song et.al. (2002b) relaxed the normal assumption by assuming

that the density of the underlying covariates belongs to a smooth class. These ap-

proaches involve an intensive computation of the use of EM-algorithm. Huang and

Wang (2000) and Song and Huang (2005) proposed a corrected score approach which

does not require any distribution assumption on the random effects and the error term

ε. Their models assume that the underlying covariate W is time-independent. In ad-

dition, the corrected score method requires replicated covariate observations for each

subject. In many applications, however, the underlying covariates are time-dependent

and replicated covariate observations for each subject may not be available. Recently,

an interesting method was proposed by Wang (2006). With the normal distribution as-

sumption for the error terms, Wang’ method does not have any distribution assumption

on W (s). This method is based on the assumption that the hazard rate depends on

the time-independent random effects, not the time-dependent underlying process W (s).

Another estimation method, called conditional score (CS) estimator, was proposed by

Tisiatis and Davidian (2001), where the hazard rate λ(s) is assumed to depend on the

time-dependent underlying process and the error term is assumed to be normally dis-
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tributed. Note that the CS estimator does not require any distribution assumption on

W (s).

In this paper, following Tisiatis and Davidian (2001) we assume that the failure time

hazard rate depends on a time-dependent covariate process. With the normal dis-

tribution assumption on the error ε, a simple working-likelihood (SWL) estimator is

proposed without involving any distribution assumption on ω0 and ω1. The SWL esti-

mator is proved to be consistent and asymptotically normally distributed under some

regular conditions. A consistent covariance estimator is also provided. We then relax

the normal distribution assumption on the error ε. A generalized working-likelihood

(GWL) estimator is proposed for such cases. Consistency and asymptotic normality

of the GWL estimator are provided. Simulation studies demonstrate that when the

error term ε follows a normal distribution, the SWL estimator is as efficient as the

CS estimator of Tisiatis and Davidian (2001). Numerical studies also show that the

GWL estimator works very well and it is more efficient than the SWL and CS esti-

mators when either ε or (ω0, ω1) is not normally distributed. This paper is organized

as follows. Models and notation are given in Section 2. In Section 3 we propose the

simple working-likelihood estimator. The generalized working-likelihood estimator is

introduced in Section 4. Numerical studies, real data analysis and discussions are given

in Sections 5 and 6.

2 Models and notations

Let Zi(s) be the observed time-dependent covariate and Wi(s) be the unobserved time-

dependent process. Throughout this paper for simplicity we assume that Wi(s) is
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a univariate process, though the proposed methods can be extended to a multivariate

unobserved time-dependent process. Without loss of generality, we assume that Wi(s) =

∑q−1
j=0 ωijs

j. Here ωi = (ωi0, · · · , ωi,q−1) is the random coefficients/effects for the ith

subject. In practice we cannot observe Wi(s) but observe mi longitudinal measurements

W̃ i = {W̃ij, j = 1, · · · ,mi} as

W̃ij = Wi(tij) + εij, (1)

at ordered times ti = (ti1, · · · , ti,mi
)T . We assume that ωi is independent of ti. Let

εi = (εi1, · · · , εi,mi
). Throughout this paper we do not put any distribution assumption

on ωi.

Let Ti be the survival time of the ith subject. In practice, we may not observer Ti for

all subjects. Instead, we only observe T̃i = min(Ti, Ci) and δi = I(Ti ≤ Ci), where

the censoring variable Ci is independent of Ti. There is an additional censoring at τ ,

which is the end time of the experiment. We assume that Ti and Ci are independent of

ti and εi. Cox proportional hazard model assumes that the hazard rate is a function

of covariates through the following form, λi(s) = λ0(s) exp(γWi(s) + βT Zi(s)) where

λ0(t) is an arbitrary baseline hazard function.

Define counting processes dNi(s) = I[s ≤ T̃i ≤ s + ds, δi = 1, ti,mi
≤ s] and at-risk

processes Yi(s) = I[T̃i ≥ s, ti,mi
≤ s]. We have

E(dNi(s)|Fi,s) = λ0(s)ds exp(γWi(s) + βT Zi(s))Yi(s), (2)

where Fi,s is the filtration generated from σ-fields σ{T̃i ≤ u, δi,ωi,Zi(u), u ≤ s} and
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σ{ti,mi
≤ u, u ≤ τ}. The log-partial likelihood function for parameter θ = (γ, βT )T is

l(θ) = n−1
∑

i

∫ [
γWi(s) + βT Zi(s)− log E(0)(W,θ, s)

]
dNi(s), (3)

where E(0)(W,θ, s) = n−1
∑

i E
(0)
i (Wi,θ, s) := n−1

∑
i exp[γWi(s) + βT Zi(s)]Yi(s). If

Wi(s) is fully observed, then we can maximize l(θ) by solving the following equations

U (1)(θ, τ) := n−1
∑

i

∫ τ

0

[(
Wi(s)

Zi(s)

)
− E(1)(W,θ, s)

E(0)(W, θ, s)

]
dNi(s) = 0, (4)

where E(1)(W,θ, s) = ∂E(0)(W,θ,s)

∂(γ,βT )T and

E(1)(W,θ, s) = n−1
∑

i

E
(1)
i (Wi, θ, s) := n−1

∑
i

(
Wi(s),Zi(s)

T
)T

E
(0)
i (Wi,θ, s).

Using martingale theories, under some regular conditions it is straightforward to show

that the maximum likelihood estimate based on (3) is consistent.

When Wi(s) is measured with error, the score function in (4) is not available to use. To

solve this problem, a naive approach is to replace Wi(s) with its least square estimate

and then treat this estimate as a covariate. Another method is to use the regression

calibration estimate, which replaces Wi(s) with its conditional expectation given the

longitudinal measurements. These approaches, however, result in a severe bias to the

estimate of γ. Detailed discussions and comparisons can be found in Tisiatis and

Davidian (2001) and Wang (2006). Based on a sufficient statistic for Wi(s) Tisiatis and

Davidian (2001) proposed a conditional score estimator, where no distribution about

the random effects ωi is assumed. The conditional score estimate is more efficient than

the naive approach and regression calibration.
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3 A simple working likelihood estimator

Throughout this section, we assume that εi in (1) has a normal distribution εi ∼

N(0, σ2Imi
). We assume that ωi, i = 1, · · · , n are i.i.d. with an unknown common

multivariate distribution.

3.1 Unbiased working log-likelihood function

Let Ŵi(s) be the ordinary LSE of Wi(s) using all the longitudinal observations W̃ i. This

requires at least q longitudinal measurements on subject i. Denote s = (1, s, · · · , sq−1)T

and

Ai =




1 ti,1 · · · tq−1
i,1

...
...

...
...

1 ti,mi
· · · tq−1

i,mi




.

Then we have Var(Ŵi(s)|Wi(s)) = σ2vi(s) where vi(s) := sT (AT
i Ai)

−1s. A consistent

estimator (Tisiatis and Davidian, 2001) for σ2 is σ̂2 =
∑

i I[mi>q]Ri∑
i I[mi>q](mi−q)

, where Ri is

the residual sum of squares for subject i based on the least squares fit to all the mi

observations.

Let Ê(0)(θ, σ2, s) = n−1
∑

i Ê
(0)
i (θ, σ2, s) and

Ê
(0)
i (θ, σ2, s) := exp

[
γŴi(s)− γ2σ2vi(s)

2
+ βT Zi(s)

]
Yi(s).

It is obvious that given Wi(s) the LSE Ŵi(s) is normally distributed. Thus given Wi(s)

the random variable exp[γŴi(s)] has a log-normal distribution. Using the well-known
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results for the expectation of a log-normal distribution, we have E{exp[γŴi(s)]|Wi(s)} =

exp[γWi + γ2σ2vi(s)/2], where E represents the expectation. Therefore

E [Ê
(0)
i (θ, σ2, s)|Wi(s)] = E

(0)
i (Wi, θ, s) (5)

which implies EÊ
(0)
i (θ, σ2, s) = EE

(0)
i (Wi,θ, s).

Under some regular conditions (see Appendix A, C.2), according to (5) we can show

that, in probability,

lim
n→∞

Ê(0)(θ, σ2, s) = lim
n→∞

E(0)(W,θ, s) := e(0)(θ, s). (6)

Assume σ2 is known first. We consider the following working likelihood function

l̂n(θ, σ2) = n−1
∑

i

∫ [
γŴi(s) + βT Zi(s)− log Ê(0)(θ, σ2, s)

]
dNi(s). (7)

From (6) we know that l̂n(θ, σ2) is a working likelihood function asymptotically unbiased

to l(θ) given in (3).

3.2 The maximum likelihood estimator

To maximize l̂n(θ, σ2) for the fixed σ2, given in (7), we solve the following equations,

Û (1)
γ (θ, σ2, τ) := n−1

∑
i

∫ τ

0

[
Ŵi(s)− Ê

(1)
γ (θ, σ2, s)

Ê(0)(θ, σ2, s)

]
dNi(s) = 0,

Û
(1)

β (θ, σ2, τ) := n−1
∑

i

∫ τ

0


Zi(s)−

Ê
(1)

β (θ, σ2, s)

Ê(0)(θ, σ2, s)


 dNi(s) = 0, (8)
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where

Ê(1)
γ (θ, σ2, s) =

∂Ê(0)(θ, σ2, s)

∂γ
= n−1

∑
i

[
Ŵi(s)− σ2vi(s)γ

]
Ê

(0)
i (θ, σ2, s),

Ê
(1)

β (θ, σ2, s) =
∂Ê(0)(θ, σ2, s)

∂β
= n−1

∑
i

Zi(s)Ê
(0)
i (θ, σ2, s).

Let Ê
(1)

(θ, σ2, s) = (Ê
(1)
γ (θ, σ2, s), Ê

(1)

β (θ, σ2, s)T )T and

Û
(1)

(θ, σ2, s) = (Û (1)
γ (θ, σ2, s), Û

(1)

β (θ, σ2, s)T )T .

Then we can write the estimating equations in (8) as

Û
(1)

(θ, σ2, τ) := n−1
∑

i

∫ τ

0

[(
Ŵi(s)

Zi(s)

)
− Ê

(1)
(θ, σ2, s)

Ê(0)(θ, σ2, s)

]
dNi(s) = 0. (9)

If σ2 is unknown, it can be replaced by the consistent estimator σ̂2. In this case,

Û
(1)

(θ, σ̂2, τ) = 0 is an estimating equation asymptotically unbiased to (4).

Theorem 3.1. Let θ̂ be the estimated value by solving Û
(1)

(θ, σ̂2, τ) = 0 and θ0 be

the true parameter. Under some regular conditions given in Appendix A, we have

limn→∞ θ̂ = θ0 in probability.

Proof. Under some regular conditions l(θ) is concave. The theorem then follows from

the facts that l̂n(θ, σ2) is asymptotically unbiased to l(θ) and that under some mild

regular conditions l(θ) has a unique maximum at θ = θ0.

Let N̄(s) =
∑

i Ni(s)/n. A consistent estimator for λ0(s)ds is λ̂0(s)ds = dN̄(s)

Ê(0)(θ̂,σ̂2,s)
.
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3.3 Covariance estimation

Let

Ê
(2)

(θ, σ2, s) :=
∂Ê

(1)
(θ, σ2, s)

∂θ

= n−1
∑

i




[Ŵi(s)− σ2vi(s)γ]2 − σ2vi(s) [Ŵi(s)− σ2vi(s)γ]Zi(s)
T

Zi(s)[Ŵi(s)− σ2vi(s)γ] Zi(s)Zi(s)
T


 Ê

(0)
i (θ, σ2, s)

and

V̂ (θ, σ2, s) :=
Ê

(2)
(θ, σ2, s)

Ê(0)(θ, σ2, s)
−

{
Ê

(1)
(θ, σ2, s)

Ê(0)(θ, σ2, s)

}⊗2

where for any vector a the notation a⊗2 represents the outer product aa′.

Under regular conditions C.2 and C.3 in Appendix A, V̂ (θ, σ2, s) converges uniformly

to v(θ, s) given in C.3 in Appendix A and n−1
∫

V̂ (θ, σ̂2, s)
∑

i dNi(s) converges to

∫
v(θ, s)e(0)(θ, s)λ0(s)ds in probability. The asymptotic normality of θ̂ is established

by the following theorem.

Theorem 3.2. For the estimator θ̂ in Theorem 1, we have n1/2(θ̂ − θ0) ⇒ N(0,R)

where R = I(θ0, τ)−1ΣU(θ0, σ
2, τ)I(θ0, τ)−1, ΣU(θ0, σ

2, τ) = limn→∞ V ar[
√

nÛ
(1)

(θ, σ̂2, τ)]

and

I(θ0, τ) = −
∫

v(θ0, s)e
(0)(θ0, s)λ0(s)ds.

Note that a consistent estimator for I(θ0, τ) is

Î(θ̂, σ̂2, τ) = − 1

n

∫ ∑
i

V̂ (θ̂, σ̂2, s)dNi(s).
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Define

Φ̂i(θ0, σ̂
2, t) =

∫ t

0

[(
Ŵi(s)
Zi(s)

)
− Ê

(1)
(θ0, σ̂

2, s)
Ê(0)(θ0, σ̂2, s)

]
dNi(s) (10)

−
∫ t

0

[(
Ŵi(s)− σ̂2vi(s)γ

Zi(s)

)
− Ê

(1)
(θ0, σ̂

2, s)
Ê(0)(θ0, σ̂2, s)

]
Ê

(0)
i (θ0, σ̂

2, s)λ̂0(s)ds.

A consistent estimator for ΣU(θ0, σ
2, t) is

Σ̂U(θ̂, σ̂2, t) =
1

n

n∑
i

Φ̂i(θ̂, σ̂2, t)⊗2 +
n∑

i=2

Φ̂i(θ̂, σ̂2, t)⊗ Φ̂1(θ̂, σ̂2, t). (11)

Thus a consistent estimator for R is R̂ = Î(θ̂, σ̂2, τ)−1Σ̂U(θ̂, σ̂2, τ)Î(θ̂, σ̂2, τ)−1.

4 A general working likelihood estimator

Throughout this section, we relax the normal distribution assumption for the random

errors εi and only assume εij, j = 1, · · · , mi, i = 1, · · · , n are i.i.d. with mean 0 and

finite second moments. We also assume that given ωi, (W̃ij, tij), j = 1, · · · ,mi are i.i.d.

pairs.

4.1 Unbiased log-likelihood function and unbiased estimating

equation

Let ξi(s) = Ŵi(s)−Wi(s). We then have

ξi(s) = sT (AT
i Ai)

−1AT
i εi. (12)
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Note that ξi(s), i = 1, · · · , n may not have the same distribution since the number of

longitudinal measurements of each subject, mi, may not be necessarily the same.

Suppose each subject has M extra longitudinal observations, i.e., (W̃ij,1, tij,1) j =

1, · · · ,M , which are i.i.d pairs and are also independent of (W̃ij, tij), j = 1, · · · ,mi.

The Least-Squares estimator based on the extra longitudinal observations is denoted

by Ŵi,1(s). Let ξi,1(s) = Ŵi,1(s)−Wi(s). Since ξi,1(s) has a similar expression as that

in (12) and each subject has M replicated longitudinal measurements, we know that

ξi,1(s), i = 1, · · · , n are i.i.d. random variables.

Let ϕ(k)(γ, s) = E [ξi,1(s)
k exp(γξi,1(s))] for k = 0, 1, 2. Denote

Ĕ
(0)
i (θ, s) = E

(0)
i (Ŵi,1, θ, s).

Note that Ĕ
(0)
i (θ, s) is E

(0)
i (Wi,1,θ, s) with Wi replaced by Ŵi,1, the Least Squares

estimator based on the M extra longitudinal observations.

Since ξi(s)− ξi,1(s) = Ŵi(s)− Ŵi,1(s), we have

Ĕ
(0)
i (θ, s)

ϕ(0)(γ, s)
=

E
(0)
i (Ŵi,θ, s)

exp(γξi(s)− γξi,1(s))

1

ϕ(0)(γ, s)

=
E

(0)
i (Ŵi,θ, s)

exp(γξi(s))

exp[γξi,1(s)]

ϕ(0)(γ, s)
= E

(0)
i (Wi, θ, s)

exp[γξi,1(s)]

ϕ(0)(γ, s)
.

Therefore E [Ĕ
(0)
i (θ, s)/ϕ(0)(γ, s)|Wi(s)] = E

(0)
i (Wi, θ, s). If let Ĕ(0)(θ, s) = n−1

∑
i Ĕ

(0)
i (θ, s),

then we have limn→∞ Ĕ(0)(θ, s)/ϕ(0)(γ, s) = limn→∞ E(0)(θ, s) = e(0)(θ, s). Similar to

the results in Section 3, we have an unbiased log-likelihood function as follows

l̆n(θ) = n−1
∑

i

∫ [
γŴi(s) + βT Zi(s)− log

Ĕ(0)(θ, s)

ϕ(0)(γ, s)

]
dNi(s). (13)
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Let

Ψ =

{
ψ1(γ, s) =

ϕ(1)(γ, s)

ϕ(0)(γ, s)
, ψ2(γ, s) =

ϕ(2)(γ, s)

ϕ(0)(γ, s)

}
.

Then unbiased estimating equations are

Ŭ
(1)

(θ,Ψ, τ) := n−1
∑

i

∫ τ

0

[(
Ŵi(s)

Zi(s)

)
− Ĕ

(1)
(θ,Ψ, s)

Ĕ(0)(θ, s)

]
dNi(s) = 0, (14)

where

Ĕ
(1)

(θ,Ψ, s) =
∂Ĕ(0)(θ, s)

∂θ
:= n−1

∑
i

(
Ŵi,1(s)− ψ1(γ, s)

Zi(s)

)
Ĕ

(0)
i (θ, s).

Let Ĕ
(2)

(θ,Ψ, s) = ∂Ĕ
(1)

(θ,Ψ,s)
∂θ

. We have

Ĕ
(2)

(θ,Ψ, s) = n−1
∑

i







Ŵi,1(s)− ψ1(γ, s)

Zi(s)




⊗2

−




ψ2(γ, s)− ψ1(γ, s)2 0

0 0





 Ĕ

(0)
i (θ, s).

Thus the derivative of Ŭ
(1)

(θ,Ψ, τ) with respect to θ is

Ĭ(θ,Ψ, τ) = − 1

n

∑
i

∫
V̆ (θ,Ψ, s)dNi(s)

where

V̆ (θ,Ψ, s) =
Ĕ

(2)
(θ,Ψ, s)

Ĕ(0)(θ, s)
−

{
Ĕ

(1)
(θ,Ψ, s)

Ĕ(0)(θ, s)

}⊗2

.

Note that if we replace Ψ = {ψ1(γ, s), ψ2(γ, s)} in (14) by its consistent estimator, then

we can calculate the MLE by solving score functions Ŭ
(1)

(θ, Ψ̂, τ) = 0.
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4.2 Consistent estimator for Ψ

Suppose that for each (W̃ij,1, tij,1), j = 1, · · · ,M , there are other two replicated data

sets (W̃ij,r, tij,r), j = 1, · · · ,M, r = 2, 3. Based on the two replicated data sets we can

find the LSEs Ŵi,r(s), r = 2, 3. Let ξi,r(s) = Ŵi,r(s) − Wi(s). For r = 2, 3, we can

calculate i.i.d. values ξi,1(s)− ξi,r(s) = Ŵi(s)− Ŵi,r(s), i = 1, · · · , n. We then have the

following theorem.

Theorem 4.1. Let

ψ̂1(γ, s) :=

∑
i(ξi,1(s)− ξi,2(s)) exp(γξi,1(s)− γξi,3(s))∑

i exp(γξi,1(s)− γξi,3(s))
,

ψ̂2(γ, s) :=

∑
i(ξi,1(s)− ξi,2(s))

2 exp(γξi,1(s)− γξi,3(s))∑
i exp(γξi,1(s)− γξi,3(s))

−
∑

i σ
2sT [AT

i,2Ai,2]
−1s exp(γξi,1(s)− γξi,3(s))∑

i exp(γξi,1(s)− γξi,3(s))
,

where Ai,2 is the regressor matrix for the second replicated data set (W̃ij,2, tij,2), j =

1, · · · ,M of subject i. We then have ψ̂1(γ, s) → ψ1(γ, s) and ψ̂2(γ, s) → ψ2(γ, s) in

probability as n →∞.

With the definition of Ψ̂ = (ψ̂1(γ, s), ψ̂2(γ, s)) given in the above theorem, we have the

unbiased estimating equations as follows

Ŭ
(1)

(θ, Ψ̂, τ) := n−1
∑

i

∫ τ

0

[(
Ŵi(s)

Zi(s)

)
− Ĕ

(1)
(θ, Ψ̂, s)

Ĕ(0)(θ, s)

]
dNi(s) = 0. (15)

Similar to the proof for Theorem 3.1 we can show that the estimated value θ̆ by solving

(15) is consistent.
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4.3 Covariance estimation

Similar to the results in Section 3, we can show that
√

n(θ̆ − θ) converges weakly to a

normal distribution N(0,R). Let λ̆0(s)ds = dN̄(s)/Ĕ(0)(θ̆, s) and

Φ̆i(θ, Ψ̂, t) =

∫ t

0

[(
Ŵi(s)

Zi(s)

)
− Ĕ

(1)
(θ, Ψ̂, s)

Ĕ(0)(θ, s)

]
dNi(s)

−
∫ t

0

[(
Ŵi(s)− ψ̂1(γ, s)

Zi(s)

)
− Ĕ

(1)
(θ, Ψ̂, s)

Ĕ(0)(θ, s)

]
Ĕ

(0)
i (θ, s)λ̆0(s)ds.

A consistent estimate for R is given by

R̆ = Ĭ(θ̆, Ψ̂, τ)−1

[
1

n

∑
i

Φ̆i(θ̆, Ψ̂, τ)⊗2 +
n∑

i=2

Φ̆i(θ̆, Ψ̂, τ)⊗ Φ̆1(θ̆, Ψ̂, τ)

]
Ĭ(θ̆, Ψ̂, τ)−1.

4.4 Constructing the three groups of replicated longitudinal

measurements

The flexibility of the above method is that it makes no distribution assumption on

random effects and random errors. But there is a potential drawback that for each

subject it requires three extra longitudinal data sets, {(W̃ij,r, tij,r), j = 1, · · · ,M}, r =

1, 2, 3.

Note that although in practice the replicated longitudinal observations (W̃ij,r, tij,r),

j = 1, · · · , M, r = 1, 2, 3 may not be available directly, we can construct replicated

data sets in the following way. We may choose M = q + 2 or M = q + 3 and then

select 3M longitudinal measurements from each individual if it has no less than 3M

longitudinal observations. The 3M longitudinal measurements will be partitioned ran-
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domly into three groups as (W̃ij,r, tij,r), j = 1, · · · , M, r = 1, 2, 3, which can be viewed

as replicated longitudinal observations. These measurements will be used to calculate

the consistent estimator Ψ̂. Then we keep the first group of longitudinal measure-

ments (W̃ij,1, tij,1), j = 1, · · · , M unchanged and the rest of longitudinal observations

for subject i are denoted as (W̃ij, tij), j = 1, · · · ,mi.

Obviously, the larger value of M the smaller variance for ξi,r(s). Thus a larger value of

M leads to smaller variances of Ψ̂ and also the estimating equation (15). We expect

that a larger value of M may result in a better estimator of θ. On the other hand,

when using the above method to construct the three replicated data sets, subjects with

less than 3M longitudinal observations are ignored. If we choose a very large value of

M , then too many subjects will not be taken into account when estimating Ψ̂. This

may lead to a larger variance of Ψ̂ and further a poor estimator of θ. In summary,

we should choose M as large as possible, conditioning on that most subjects have at

least 3M longitudinal measurements. Effects on the parameter estimators by choosing

different values of M are discussed in the following section through simulation studies.

5 Simulation studies and data analysis

5.1 Simulation studies

We consider simulation scenarios in Tisiatis and Davidian (2001) where for simplicity

there is a single time-dependent covariate Wi(s) and no time-independent covariates

are involved in the proportional hazard model. We choose a modified version of the

scenarios in Tisiatis and Davidian (2001).
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We assume Wi(s) = ωi0 +ωi1s. Two different distributions for (ωi0, ωi1) are considered.

They are (i) (ωi0, ωi1) is from a bivariate normal distribution with mean (3.173,−0.0103)

and covariance matrix D with elements D = (D11, D12, D22) = (1.24, 0.039, 0.003);

(ii) (ωi0, ωi1) follows a mixture of bivariate normal distribution, with mixing propor-

tion 0.5 and mixture component N(µk,Dk), k = 1, 2, where µ1 = (6.173,−0.0103)T ,

µ2 = (2.173,−0.0103)T and D1 = D2 = D. The maximum number of longitudi-

nal observations for each subject is 24 and nominal times of observation for Wi(s) are

ti = {8 + 3j, j = 0, · · · , 23}. Survival times are generated from the model λi(s) =

exp(γWi(s)) with γ = −1. The censoring distribution is exponential with mean 150

and with additional censoring at 80. We also consider two scenarios for the distribution

of error terms: (a) a normally distributed error with distribution N(0, 0.5); (b) the

error term has a mixture normal distribution, 0.7N(−0.7, 0.01) + 0.3N(1.633, 0.01).

In each scenario sample sizes are chosen to be n = 200 and then 500 Monte Carlo data

sets were generated. The parameter γ was estimated using four different methods: (1)

using the ‘ideal’ estimator that can be obtained by fitting by partial likelihood with true

values of Wi(s); (2) using the conditional score (CS) estimator; (3) using the simple

working likelihood (SWL) method; (4) using the generalized working likelihood (GWL)

method with M = 4, 5. Other methods such as naive regression or method of ‘last value

carried forward’ are not considered in the simulation studies since they are much less

efficient than the conditional score estimator (Tisiatis and Davidian, 2001; Huang and

Wang, 2000).

Table 1 is about here.

When the error term is normally distributed, from Table 1 we can see that the CS
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estimator and the SWL estimator work as well as the ‘ideal’ estimator in terms of

the bias. The GWL estimators with M = 4, 5 also have very small bias. The GWL

estimators have larger standard error estimates than the other two estimators, as the

GWL method does not make the normal assumption for random error term.

When the error term is not normally distributed, results are summarized in Table 2.

Table 2 is about here.

We can see that the bias of CS estimator and SWL estimator increase since they are

valid only for normal random errors, but the GWL estimators do not change much and

actually they are very stable. We conclude that when random errors are not normally

distributed, the GWL estimators with M = 4, 5 have much smaller bias than SWL and

CS estimators. We also investigated other choices for σ2 and obtained similar results.

As the variance of εij increases, the standard errors of all estimators increase. This is

because a large variance of εij results in a large variance for estimating equations and

further leads to a large standard error for our estimator.

Tisiatis and Davidian (2001) pointed out that the estimating equation of conditional

score method may have multi-roots. We then investigated the multi-roots problem for

estimating equations of both methods. The typical score plots are shown in Figure 1.

We can see that all methods have a solution close to the truth. The generalized working

likelihood estimating equations have a single root. The conditional score method and

the simple working likelihood method have multiple solutions. As Tisiatis and Davidian

(2001) suggested, we may choose the naive regression estimator as starting value to

locate the correct estimator.

Figure 1 is about here.
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We also find out that when using generalized working likelihood method and choosing

M = 4, the score function may have an outlier solution. In Figure 2 the solution for

M = 4 are outliers while the solution for M = 5 is the truth. The outliers will result

in poor estimator for the standard error and the mean. Similarly as Song and Huang

(2005), when all estimators exist and no outliers exist, the general working likelihood

estimators are stable and have a small bias, regardless of the distributions of the random

effects and the error terms.

Figure 2 is about here.

5.2 Data analysis

To demonstrate the proposed methods we use the primary biliary cirrhosis (PBC) data

set collected by the Mayo Clinic from 1974 to 1984. The PBC is a chronic disease

that can eventually destroy some of the bile ducts linking liver to gut. When the PBC

damages bile ducts, bile can no longer flow through them. Instead it builds up in the

liver, damaging the liver cells and causing inflammation and scarring. In the clinical

trial, survival status and laboratory results (e.g., serum bilirubin) of 312 patients were

recorded. In this clinical trail, 158 out of 312 patients took the drug D-penicillamine and

the other patients are in the control group. Serum bilirubin are measured at irregularly

time points, recorded until death or censoring. Among the 312 patients, the maximum

number of repeated measurement is 16. More details of the trail study and the data

set can be found in Ding and Wang (2008) and Fleming and Harrington (1991).

We take the biomarker serum bilirubin as the time-dependent covariate process Wi(s)

and the treatment type as the time-independent covariate Zi in the Cox regression model
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λi(s) = λ0(s) exp(γWi(s) + βZi), where the longitudinal model is Wi(s) = ωi0 + ωi1s.

In our analysis we took logarithm transformation on the serum bilirubin values as the

longitudinal measurements. Six typical patients’ serum bilirubin values are plotted in

Figure 3.

Figure 3 is about here.

We fit the model using the conditional score method, simple working-likelihood method

and generalized working-likelihood method. The maximum number of longitudinal

observations for each subject is 16 and there are 32 patients who have more than

12 measurements on serum bilirubin. We choose M = 4 when using the generalized

working-likelihood method. This means that 3M = 12 longitudinal measurements are

selected and they are randomly partitioned into three groups as replicated observations

to estimate Ψ.

The results are provided in Table 3. The three approaches provide similar results. All

three methods suggest that the coefficient estimate γ̂ for the latent process of serum

bilirubin is not significant. The coefficient estimator based on baseline serum bilirubin

in Fleming and Harrington (1991) is 0.8, significantly unequal to 0. This suggests that

the baseline serum bilirubin is a risk factor for survival times but the serum bilirubin

at later times after treatment is not. Fleming and Harrington (1991) also studied the

treatment effect of D-penicillamine to PBC and their result is that the treatment is not

significant. From Table 3 we can see that all three methods give the same result that

the coefficient estimator β̂ for treatment Zi is not significantly unequal to 0.

Table 3 is about here.
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6 Discussion

We have proposed new methods for joint modelling of survival events and error-contaminated

time-dependent covariates. The estimators are easily computed and their large sam-

ple properties are shown. We suggest using the generalized working likelihood method

in practice, since it does not lose much efficiency when the random error is normally

distributed and it has the smallest bias if the error term is not normally distributed.

When using the general working likelihood method, however, we need replicated ob-

servations. Even if replicated observations do not exists, we can construct replicates

from the longitudinal observations using the method described in Section 4. When

partitioning the 3M longitudinal measurements into three groups, it should be done

randomly for each subject. Note that we cannot partition the 3M measurements into

three groups such that tij,1 < tik,2 < til,3 for j, k, l = 1, · · · ,M . This is because other-

wise (W̃ij,r, tij,r, j = 1, · · · ,M) will not have the same distribution for different values

of r and then large sample properties of the estimator cannot be guaranteed.

All the existing parametric or nonparametric correction methods assume that the ob-

servation times tij are non-informative. In practice we may observe error-contaminated

longitudinal points collected at informative observation times (Liang et.al., 2009). For

such problems the existing methods are not valid. This deserves as our future research

in the field.

A Regular conditions

C.1 The time τ is such that
∫ τ

0
λ0(s)ds < ∞.
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C.2 Let

E(k)(W,θ, s) = n−1
∑

i

E
(k)
i (Wi, θ, s) := n−1

∑
i

(
Wi(s)

Zi(s)

)⊗k

E
(0)
i (Wi,θ, s), k = 0, 1, 2.

There exists a neighborhood Θ of θ0 and, respectively, scalar, vector and matrix func-

tions e(0), e(1) and e(2) defined on Θ× [0, τ ] such that,

sup
s∈[0,τ ],θ∈Θ

||E(k)(W,θ, s)− e(k)(θ, s)|| → 0

in probability as n →∞.

C.3 Let v = e(2)/e(0) − [e(1)/e(0)]⊗2. Then for all θ ∈ Θ and 0 ≤ s ≤ τ ,

∂

∂θ
e(0)(θ, s) = e(1)(θ, s)

∂2

∂θ2 e(0)(θ, s) = e(2)(θ, s).

C.4 The matrix

Σ(θ0, τ) =

∫
v(θ0, s)e

(0)(θ0, s)λ0(s)ds

is positive definite.
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B Proof of Theorem 3.3

Proof. If
√

nÛ
(1)

(θ0, σ̂
2, τ) converges weakly to a normal distribution, using the first-

order Taylor extension for Û
(1)

(θ0, σ̂
2, t) we have

√
n(θ̂ − θ0) ⇒ N(0,R), where

R = I(θ0, τ)−1ΣU(θ0, σ
2, τ)I(θ0, τ)−1

and ΣU(θ0, σ
2, τ) = limn→∞ V ar[

√
nÛ

(1)
(θ0, σ̂

2, τ)]. So we only need to show the

asymptotic property for
√

nÛ
(1)

(θ0, σ̂
2, τ).

We can write

√
nÛ

(1)
(θ0, σ̂

2, t) = n−1/2
∑

i

∫ t

0

[(
Ŵi(s)
Zi(s)

)
− Ê

(1)
(θ0, σ̂

2, s)
Ê(0)(θ0, σ̂2, s)

]
dNi(s)

−n−1/2
∑

i

∫ t

0

[(
Ŵi(s)− σ̂2vi(s)γ

Zi(s)

)
− Ê

(1)
(θ0, σ̂

2, s)
Ê(0)(θ0, σ̂2, s)

]
Ê

(0)
i (θ0, σ̂

2, s)λ0(s)ds

which is equivalent to

√
nÛ

(1)
(θ0, σ̂

2, t) = n−1/2
∑

i

∫ t

0

[(
Ŵi(s)
Zi(s)

)
− e(1)(θ0, s)

e(0)(θ0, s)

]
dNi(s)

−n−1/2
∑

i

∫ t

0

[(
Ŵi(s)− σ̂2vi(s)γ

Zi(s)

)
− e(1)(θ0, s)

e(0)(θ0, s)

]
Ê

(0)
i (θ0, σ̂

2, s)λ0(s)ds

+n−1/2
∑

i

∫ t

0

(
e(1)(θ0, s)
e(0)(θ0, s)

− Ê
(1)

(θ0, σ̂
2, s)

Ê(0)(θ0, σ̂2, s)

)(
dNi(s)− Ê

(0)
i (θ0, σ̂

2, s)λ0(s)ds
)

:= I − II + III.

We know that III = op(1), since under regular conditions E [dNi(s)−Ê
(0)
i (θ0, σ

2, s)λ0(s)ds|Wi(s)] =

0 and supθ,s

∣∣∣∣e(1)(θ,s)

e(0)(θ,s)
− Ê

(1)
(θ,s)

Ê(0)(θ,s)

∣∣∣∣ = o(1). Thus we can write

√
nÛ

(1)
(θ0, σ̂

2, t) = I − II + op(1) = n−1/2
∑

i

Φi(θ0, σ̂
2, t) + op(1)
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where Φi(θ0, σ
2, t) is

∫ t

0

[(
Ŵi(s)
Zi(s)

)
− e(1)(θ0, s)

e(0)(θ0, s)

]
dNi(s)−

∫ t

0

[(
Ŵi(s)− σ2vi(s)γ

Zi(s)

)
− e(1)(θ0, s)

e(0)(θ0, s)

]
Ê

(0)
i (θ0, σ

2, s)λ0(s)ds.

Since Φi(θ0, σ
2, t), i = 1, · · · , n are i.i.d. random variables, we know that n−1/2

∑
i Φi(θ0, σ

2, t)

and n−1/2
∑

i[Φi(θ0, σ̂
2, t)−Φi(θ0, σ

2, t)] both converge weakly to a Gaussian process.

Therefore we have
√

nÛ
(1)

(θ0, σ̂
2, t) converges weakly to a normal distribution with

mean 0 and covariance matrix

ΣU(θ0, σ
2, t) = lim

n→∞

[
1

n

n∑
i=1

Φi(θ0, σ̂
2, t)⊗2 +

n∑
i=2

Φi(θ0, σ̂
2, t)⊗Φ1(θ0, σ̂

2, t)

]

According to the definition of Φ̂i(θ0, σ̂
2, t) given in Theorem 3.3, we know that a con-

sistent estimator for ΣU(θ0, σ
2, t) is

Σ̂U(θ̂, σ̂2, t) =
1

n

n∑
i

Φ̂i(θ̂, σ̂2, t)⊗2 +
n∑

i=2

Φ̂i(θ0, σ̂
2, t)⊗ Φ̂1(θ0, σ̂

2, t).

Thus a consistent estimator for R is R̂ = Î(θ̂, σ̂2, τ)−1Σ̂U(θ̂, σ̂2, τ)Î(θ̂, σ̂2, τ)−1.

C Proof of Theorem 4.1

The theorem follows from the obvious results

ϕ(1)(s)

ϕ(0)(s)
=
E [ξi,1(s) exp(γξi,1(s))]

E [exp(γξi,1(s))]
=

E [(ξi,1(s)− ξi,2(s)) exp(γξi,1(s)− γξi,3(s))]

E [exp(γξi,1(s)− γξi,3(s))]
,
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ϕ(2)(s)

ϕ(0)(s)
=
E [ξi,1(s)

2 exp(γξi,1(s))]

E [exp(γξi,1(s))]
=
E [{(ξi,1(s)− ξi,2(s))

2 − ξi,2(s)
2} exp(γξi,1(s)− γξi,3(s))]

E [exp(γξi,1(s)− γξi,3(s))]

and E [ξi,2(s)
2] = σ2E [

sT [AT
i,2Ai,2]

−1s
]
.
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Table 1: Simulation results for two underlying random effect distributions, when error
term is N(0, 0.5). I, ‘ideal’; CS, conditional score estimator; SWL, simple working
likelihood estimator; GWL, Generalized working likelihood estimator with M = 4, 5;
SD, Monte Carlo standard deviation; SE, average of estimated standard errors.

n = 200
Normal covariate Mixture covariate

Method Mean SD SE Mean SD SE
I -0.9978 0.087 0.086 -0.9910 0.083 0.078

CS -0.9888 0.127 0.118 -1.0027 0.129 0.112
SWL -0.9971 0.143 0.140 -1.0103 0.140 0.129

GWL,4 -0.9957 0.249 0.268 -1.0553 0.344 0.382
GWL,5 -0.9852 0.190 0.193 -1.0243 0.217 0.227
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Table 2: Simulation results for two underlying random effect distributions, when error
term is mixed normal as 0.7N(−0.7, 0.01)+0.3N(1.633, 0.01). I, ‘ideal’; CS, conditional
score estimator; SWL, simple working likelihood estimator; GWL, Generalized working
likelihood estimator with M = 4, 5; SD, Monte Carlo standard deviation; SE, average
of estimated standard errors.

n = 200
Normal covariate Mixture covariate

Method Mean SD SE Mean SD SE
I -0.9978 0.087 0.086 -0.9910 0.083 0.078

CS -1.0808 0.135 0.124 -1.0810 0.132 0.119
SWL -1.0938 0.236 0.273 -1.0787 0.212 0.209

GWL4 -1.0263 0.419 0.490 -1.0269 0.403 0.431
GWL5 -0.9794 0.246 0.234 -0.9937 0.244 0.247

Table 3: Results for the PBC data.
γ̂ (sd) β̂ (sd)

CS -0.029 (0.069) 0.053 (0.265)
SWL -0.033 (0.055) 0.054 (0.160)
GWL -0.004 (0.099) 0.077 (0.248)
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Figure 1: Typical score plots for simulation data sets. I, ‘ideal’ method; CS, conditional
score method; SWL, simple working likelihood method; GWL, generalized working
likelihood method.
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Figure 2: Typical score plots for a simulation data set. GWL, generalized working
likelihood method.
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Figure 3: Longitudinal observation plot for six patients.
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