76,045 research outputs found
Emissivity for CO_2 at Elevated Pressures
Total absorptivity measurements have been carried out at room temperature as a function of partial pressure of CO_2 and of total pressure using nitrogen as pressurizing gas
The interaction between stray electrostatic fields and a charged free-falling test mass
We present an experimental analysis of force noise caused by stray
electrostatic fields acting on a charged test mass inside a conducting
enclosure, a key problem for precise gravitational experiments. Measurement of
the average field that couples to test mass charge, and its fluctuations, is
performed with two independent torsion pendulum techniques, including direct
measurement of the forces caused by a change in electrostatic charge. We
analyze the problem with an improved electrostatic model that, coupled with the
experimental data, also indicates how to correctly measure and null the stray
field that interacts with test mass charge. Our measurements allow a
conservative upper limit on acceleration noise, of 2 fm/s\rthz\ for
frequencies above 0.1 mHz, for the interaction between stray fields and charge
in the LISA gravitational wave mission.Comment: Minor edits in PRL publication proces
Charge dynamics in the half-metallic ferromagnet CrO\u3csub\u3e2\u3c/sub\u3e
Infrared spectroscopy is used to investigate the electronic structure and charge carrier relaxation in crystalline films of CrO2 which is the simplest of all half-metallic ferromagnets. Chromium dioxide is a bad metal at room temperature but it has a remarkably low residual resistivity (\u3c5 \u3eμΩ cm) despite the small spectral weight associated with free carrier absorption. The infrared measurements show that low residual resistivity is due to the collapse of the scattering rate at ω\u3c2000 \u3ecm-1. The blocking of the relaxation channels at low v and T can be attributed to the unique electronic structure of a half-metallic ferromagnet. In contrast to other ferromagnetic oxides, the intraband spectral weight is constant below the Curie temperature
Polaronic metal phases in LaSrMnO uncovered by inelastic neutron and x-ray scattering
Among colossal magnetoresistive manganites the prototypical ferromagnetic
manganite LaSrMnO has a relatively small
magnetoresistance, and has been long assumed to have only weak electron-lattice
coupling. Here we report that LaSrMnO has strong
electron-phonon coupling: Our neutron and x-ray scattering experiments show
strong softening and broadening of transverse acoustic phonons on heating
through the Curie temperature T = 350 K. Simultaneously, we observe two
phases where metallic resistivity and polarons coexist. The ferromagnetic
polaronic metal phase between 200 K and T is characterized by quasielastic
scattering from dynamic CE-type polarons with the relatively short lifetime of
. This scattering is greatly enhanced above
T in the paramagnetic polaronic metal phase. Our results suggest that the
strength of magnetoresistance in manganites scales with the inverse of polaron
lifetime, not the strength of electron-phonon coupling
Sensitivity of the Moment of Inertia of Neutron Stars to the Equation of State of Neutron-Rich Matter
The sensitivity of the stellar moment of inertia to the neutron-star matter
equation of state is examined using accurately-calibrated relativistic
mean-field models. We probe this sensitivity by tuning both the density
dependence of the symmetry energy and the high density component of the
equation of state, properties that are at present poorly constrained by
existing laboratory data. Particularly attractive is the study of the fraction
of the moment of inertia contained in the solid crust. Analytic treatments of
the crustal moment of inertia reveal a high sensitivity to the transition
pressure at the core-crust interface. This may suggest the existence of a
strong correlation between the density dependence of the symmetry energy and
the crustal moment of inertia. However, no correlation was found. We conclude
that constraining the density dependence of the symmetry energy - through, for
example, the measurement of the neutron skin thickness in 208Pb - will place no
significant bound on either the transition pressure or the crustal moment of
inertia.Comment: 25 pages, 8 figures, 5 table
Upper limits on stray force noise for LISA
We have developed a torsion pendulum facility for LISA gravitational
reference sensor ground testing that allows us to put significant upper limits
on residual stray forces exerted by LISA-like position sensors on a
representative test mass and to characterize specific sources of disturbances
for LISA. We present here the details of the facility, the experimental
procedures used to maximize its sensitivity, and the techniques used to
characterize the pendulum itself that allowed us to reach a torque sensitivity
below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of
the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on
Amaldi5 2003 conference proceedings (10 pages, 6 figures
Floer Homology and the Heat Flow
Abstract.: We study the heat flow in the loop space of a closed Riemannian manifold M as an adiabatic limit of the Floer equations in the cotangent bundle. Our main application is a proof that the Floer homology of the cotangent bundle, for the Hamiltonian function kinetic plus potential energy, is naturally isomorphic to the homology of the loop spac
Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27
Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations
- …
