1,563 research outputs found

    Specificity of Amino Acid Transport in the Tapeworm Hymenolepis Diminuta and its Rat Host

    Get PDF
    Paper by A. J. MacInnis, D. J. Graff, A. Kilejian, and C. P. Rea

    Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    Get PDF
    BAckground: Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. Results: We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. Conclusion: We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material

    Is productivity of mesic savannas light limited or water limited? Results of a simulation study

    Full text link
    A soil-plant-atmosphere model was used to estimate gross primary productivity (GPP) and evapotranspiration (ET) of a tropical savanna in Australia. This paper describes model modifications required to simulate the substantial C4 grass understory together with C3 trees. The model was further improved to include a seasonal distribution of leaf area and foliar nitrogen through 10 canopy layers. Model outputs were compared with a 5-year eddy covariance dataset. Adding the C4 photosynthesis component improved the model efficiency and root-mean-squared error (RMSE) for total ecosystem GPP by better emulating annual peaks and troughs in GPP across wet and dry seasons. The C4 photosynthesis component had minimal impact on modelled values of ET. Outputs of GPP from the modified model agreed well with measured values, explaining between 79% and 90% of the variance and having a low RMSE (0.003-0.281gCm-2day-1). Approximately, 40% of total annual GPP was contributed by C4 grasses. Total (trees and grasses) wet season GPP was approximately 75-80% of total annual GPP. Light-use efficiency (LUE) was largest for the wet season and smallest in the dry season and C4 LUE was larger than that of the trees. A sensitivity analysis of GPP revealed that daily GPP was most sensitive to changes in leaf area index (LAI) and foliar nitrogen (Nf) and relatively insensitive to changes in maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax) and minimum leaf water potential (ψmin). The modified model was also able to represent daily and seasonal patterns in ET, (explaining 68-81% of variance) with a low RMSE (0.038-0.19mmday-1). Current values of Nf, LAI and other parameters appear to be colimiting for maximizing GPP. By manipulating LAI and soil moisture content inputs, we show that modelled GPP is limited by light interception rather than water availability at this site. © 2011 Blackwell Publishing Ltd

    Diet and bone mineral density study in postmenopausal women from the TwinsUK registry shows a negative association with a traditional English dietary pattern and a positive association with wine

    Get PDF
    Background: The effect of diet on bone mineral density (BMD) remains controversial, mainly because of difficulties in isolating dietary factors from the confounding influences of age, lifestyle, and genetic factors. Objective: The aim of this study was to use a novel method to examine the relation between BMD and diet. Design: A co-twin control study design with linear regression modeling was used to test for associations between BMD and habitual intakes of calcium, vitamin D, protein, and alcohol plus 5 previously identified dietary patterns in postmenopausal women from the TwinsUK registry. This approach exploited the unique matching of twins to provide an estimate of an association that was not confounded by age, genetic background, or shared lifestyle. Results: In >2000 postmenopausal women (BMD data on 1019, 1218, and 1232 twin pairs at the hip neck, hip, and spine, respectively), we observed a positive association between alcohol intake (from wine but not from beer or spirits) and spine BMD (P = 0.01) and a negative association with a traditional 20th-century English diet at the hip neck (P = 0.01). Both associations remained borderline significant after adjustment for mean twin-pair intakes (P = 0.04 and P = 0.055, respectively). Other dietary patterns and intakes of calcium, vitamin D, and protein were unrelated to BMD. Conclusion: Our results showed that diet has an independent but subtle effect on BMD; wine intake was positively associated with spine BMD, whereas a traditional (20th-century) English diet had a negative association with hip BMD

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Familial relative risks for breast cancer by pathological subtype: a population-based cohort study.

    Get PDF
    INTRODUCTION: The risk of breast cancer to first degree relatives of breast cancer patients is approximately twice that of the general population. Breast cancer, however, is a heterogeneous disease and it is plausible that the familial relative risk (FRR) for breast cancer may differ by the pathological subtype of the tumour. The contribution of genetic variants associated with breast cancer susceptibility to the subtype-specific FRR is still unclear. METHODS: We computed breast cancer FRR for subtypes of breast cancer by comparing breast cancer incidence in relatives of breast cancer cases from a population-based series with known estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor receptor 2 (HER2) status with that expected from the general population. We estimated the contribution to the FRR of genetic variants associated with breast cancer susceptibility using subtype-specific genotypic relative risks and allele frequencies for each variant. RESULTS: At least one marker was measured for 4,590 breast cancer cases, who reported 9,014 affected and unaffected first-degree female relatives. There was no difference between the breast cancer FRR for relatives of patients with ER-negative (FRR = 1.78, 95% confidence intervals (CI): 1.44 to 2.11) and ER-positive disease (1.82, 95% CI: 1.67 to 1.98), P = 0.99. There was some suggestion that the breast cancer FRR for relatives of patients with ER-negative disease was higher than that for ER-positive disease for ages of the relative less than 50 years old (FRR = 2.96, 95% CI: 2.04 to 3.87; and 2.05, 95% CI: 1.70 to 2.40 respectively; P = 0.07), and that the breast cancer FRR for relatives of patients with ER-positive disease was higher than for ER-negative disease when the age of the relative was greater than 50 years (FRR = 1.76, 95% CI: 1.59 to 1.93; and 1.41, 95% CI: 1.08 to 1.74 respectively, P = 0.06). We estimated that mutations in BRCA1 and BRCA2 explain 32% of breast cancer FRR for relatives of patients with ER-negative and 9.4% of the breast cancer FRR for relatives of patients with ER-positive disease. Twelve recently identified common breast cancer susceptibility variants were estimated to explain 1.9% and 9.6% of the FRR to relatives of patients with ER-negative and ER-positive disease respectively. CONCLUSIONS: FRR for breast cancer was significantly increased for both ER-negative and ER-positive disease. Including receptor status in conjunction with genetic status may aid risk prediction in women with a family history.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry.

    Get PDF
    BACKGROUND: Population-based BRCA1/BRCA2 testing has been found to be cost-effective compared with family history-based testing in Ashkenazi-Jewish women were >30 years old with 4 Ashkenazi-Jewish grandparents. However, individuals may have 1, 2, or 3 Ashkenazi-Jewish grandparents, and cost-effectiveness data are lacking at these lower BRCA prevalence estimates. We present an updated cost-effectiveness analysis of population BRCA1/BRCA2 testing for women with 1, 2, and 3 Ashkenazi-Jewish grandparents. STUDY DESIGN: Decision analysis model. METHODS: Lifetime costs and effects of population and family history-based testing were compared with the use of a decision analysis model. 56% BRCA carriers are missed by family history criteria alone. Analyses were conducted for United Kingdom and United States populations. Model parameters were obtained from the Genetic Cancer Prediction through Population Screening trial and published literature. Model parameters and BRCA population prevalence for individuals with 3, 2, or 1 Ashkenazi-Jewish grandparent were adjusted for the relative frequency of BRCA mutations in the Ashkenazi-Jewish and general populations. Incremental cost-effectiveness ratios were calculated for all Ashkenazi-Jewish grandparent scenarios. Costs, along with outcomes, were discounted at 3.5%. The time horizon of the analysis is "life-time," and perspective is "payer." Probabilistic sensitivity analysis evaluated model uncertainty. RESULTS: Population testing for BRCA mutations is cost-saving in Ashkenazi-Jewish women with 2, 3, or 4 grandparents (22-33 days life-gained) in the United Kingdom and 1, 2, 3, or 4 grandparents (12-26 days life-gained) in the United States populations, respectively. It is also extremely cost-effective in women in the United Kingdom with just 1 Ashkenazi-Jewish grandparent with an incremental cost-effectiveness ratio of £863 per quality-adjusted life-years and 15 days life gained. Results show that population-testing remains cost-effective at the £20,000-30000 per quality-adjusted life-years and $100,000 per quality-adjusted life-years willingness-to-pay thresholds for all 4 Ashkenazi-Jewish grandparent scenarios, with ≥95% simulations found to be cost-effective on probabilistic sensitivity analysis. Population-testing remains cost-effective in the absence of reduction in breast cancer risk from oophorectomy and at lower risk-reducing mastectomy (13%) or risk-reducing salpingo-oophorectomy (20%) rates. CONCLUSION: Population testing for BRCA mutations with varying levels of Ashkenazi-Jewish ancestry is cost-effective in the United Kingdom and the United States. These results support population testing in Ashkenazi-Jewish women with 1-4 Ashkenazi-Jewish grandparent ancestry

    Magnetic Massive Stars As Progenitors Of ‘Heavy’ Stellar-Mass Black Holes

    Get PDF
    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of ‘heavy’ stellar-mass BHs with masses \u3e25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses \u3e25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the mesa code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙
    corecore