12,472 research outputs found
Reproducibility of electrical caries measurements: A technical problem?
The currently available instrument for electrical detection of occlusal caries lesions {[}Electronic Caries Monitor (ECM)] uses a site-specific measurement with co-axial air drying. The reproducibility of this method has been reported to be fair to good. It was noticed that the measurement variation of this technique appeared to be non-random. It was the aim of this study to analyse how such a non-random reproducibility pattern arises and whether it could be observed for other operators and ECM models. Analysis of hypothetical measurement pairs showed that the pattern was related to measurements at the high and low end of the measurement range for the instrument. Data sets supplied by other researchers to a varying degree showed signs of a similar non-random pattern. These data sets were acquired at different locations, by different operators and using 3 different ECM models. The frequency distribution of measurements in all cases showed a single or double end-peaked distribution shape. It was concluded that the pattern was a general feature of the measurement method. It was tentatively attributed to several characteristics such as a high value censoring, insufficient probe contact and unpredictable probe contact. A different measurement technique, with an improved probe contact, appears to be advisable. Copyright (C) 2005 S. Karger AG, Basel
Motivic Serre invariants, ramification, and the analytic Milnor fiber
We show how formal and rigid geometry can be used in the theory of complex
singularities, and in particular in the study of the Milnor fibration and the
motivic zeta function. We introduce the so-called analytic Milnor fiber
associated to the germ of a morphism f from a smooth complex algebraic variety
X to the affine line. This analytic Milnor fiber is a smooth rigid variety over
the field of Laurent series C((t)). Its etale cohomology coincides with the
singular cohomology of the classical topological Milnor fiber of f; the
monodromy transformation is given by the Galois action. Moreover, the points on
the analytic Milnor fiber are closely related to the motivic zeta function of
f, and the arc space of X.
We show how the motivic zeta function can be recovered as some kind of Weil
zeta function of the formal completion of X along the special fiber of f, and
we establish a corresponding Grothendieck trace formula, which relates, in
particular, the rational points on the analytic Milnor fiber over finite
extensions of C((t)), to the Galois action on its etale cohomology.
The general observation is that the arithmetic properties of the analytic
Milnor fiber reflect the structure of the singularity of the germ f.Comment: Some minor errors corrected. The original publication is available at
http://www.springerlink.co
Properties of Galaxy Groups in the SDSS: II.- AGN Feedback and Star Formation Truncation
Successfully reproducing the galaxy luminosity function and the bimodality in
the galaxy distribution requires a mechanism that can truncate star formation
in massive haloes. Current models of galaxy formation consider two such
truncation mechanisms: strangulation, which acts on satellite galaxies, and AGN
feedback, which predominantly affects central galaxies. The efficiencies of
these processes set the blue fraction of galaxies as function of galaxy
luminosity and halo mass. In this paper we use a galaxy group catalogue
extracted from the Sloan Digital Sky Survey (SDSS) to determine these
fractions. To demonstrate the potential power of this data as a benchmark for
galaxy formation models, we compare the results to the semi-analytical model
for galaxy formation of Croton et al. (2006). Although this model accurately
fits the global statistics of the galaxy population, as well as the shape of
the conditional luminosity function, there are significant discrepancies when
the blue fraction of galaxies as a function of mass and luminosity is compared
between the observations and the model. In particular, the model predicts (i)
too many faint satellite galaxies in massive haloes, (ii) a blue fraction of
satellites that is much too low, and (iii) a blue fraction of centrals that is
too high and with an inverted luminosity dependence. In the same order, we
argue that these discrepancies owe to (i) the neglect of tidal stripping in the
semi-analytical model, (ii) the oversimplified treatment of strangulation, and
(iii) improper modeling of dust extinction and/or AGN feedback. The data
presented here will prove useful to test and calibrate future models of galaxy
formation and in particular to discriminate between various models for AGN
feedback and other star formation truncation mechanisms.Comment: 16 pages, 5 figures, submitted to MNRA
Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Huebner) (Lepidoptera : Noctuidae)
Selection of resistance in Spodoptera exigua (Hubner) to an HD-1 spore-crystal mixture, CryIC (HD-133) inclusion bodies, and trypsinized toxin from Bacillus thuringiensis' subsp, aizawai and B. thuringiensis subsp. entomocidus was attempted by using laboratory bioassays. No resistance to the HD-1 spore-crystal mixture could be achieved after 20 generations of selection. Significant levels of resistance (11-fold) to CryIC inclusion bodies expressed in Escherichia coli were observed after seven generations, Subsequent selection of the CryIC-resistant population with trypsinized CryIC toxin resulted, after 21 generations of CryIC selection, in a population of S. exigua that exhibited only 8% mortality at the highest toxin concentration tested (320 mu g/g), whereas the 50% lethal concentration was 4.30 mu g/g for the susceptible colony. Insects resistant to CryIC toxin from HD-133 also were resistant to trypsinized CryIA(b), CryIC from B. thuringiensis subsp. entomocidus, CryIE-CryIC fusion protein (G27), CryIH, and CryIIA. In vitro binding experiments with brush border membrane vesicles showed a twofold decrease in maximum CryIC binding, a fivefold difference in K-d, and no difference in the concentration of binding sites for the CryIC-resistant insects compared with those for the susceptible insects, Resistance to CryIC was significantly reduced by the addition of HD-1 spores, Resistance to the CryIC toxin was still observed 12 generations after CryIC selection was removed. These results suggest that, in S. exigua, resistance to a single protein is more likely to occur than resistance to spore crystal mixtures and that once resistance occurs, insects will be resistant to many other Cry proteins, These results have important implications for devising S. exigua resistance management strategies in the field
Collective patterns arising out of spatio-temporal chaos
We present a simple mathematical model in which a time averaged pattern
emerges out of spatio-temporal chaos as a result of the collective action of
chaotic fluctuations. Our evolution equation possesses spatial translational
symmetry under a periodic boundary condition. Thus the spatial inhomogeneity of
the statistical state arises through a spontaneous symmetry breaking. The
transition from a state of homogeneous spatio-temporal chaos to one exhibiting
spatial order is explained by introducing a collective viscosity which relates
the averaged pattern with a correlation of the fluctuations.Comment: 11 pages (Revtex) + 5 figures (postscript
Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039
Recent HESS observations show that microquasars in high-mass systems are
sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray
emission is developed. Using the head-on approximation for the Compton cross
section and taking into account angular effects from the star's orbital motion,
we derive expressions to calculate the spectrum of gamma rays when nonthermal
jet electrons Compton-scatter photons of the stellar radiation field.
Calculations are presented for power-law distributions of nonthermal electrons
that are assumed to be isotropically distributed in the comoving jet frame, and
applied to -ray observations of LS 5039. We conclude that (1) the TeV
emission measured with HESS cannot result only from Compton-scattered stellar
radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a
combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data
associated with LS 5039 requires a very improbable leptonic model with a very
hard electron spectrum. Because the gamma rays would be variable in a leptonic
jet model, the data sets are unlikely to be representative of a simultaneously
measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily
to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic
modulation of the TeV emission from LS 5039 would favor a leptonic SSC or
cascade hadron origin of the emission in the inner jet, whereas stochastic
variability alone would support a more extended leptonic model. The puzzle of
the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)Comment: 17 pages, 11 figures, ApJ, in press, June 1, 2006, corrected eq.
Observations of microquasars with the MAGIC telescope
We report on the results from the observations in very high energy band (VHE,
E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The
observations were performed with the MAGIC telescope, for a total of 40 hours
during 26 nights, spanning the period between June and November 2006. We report
on the results of the searches for steady and variable gamma-ray signals,
including the first experimental evidence for an intense flare, of duration
between 1.5 and 24 hours.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of
the MAGIC Collaboratio
Gamma rays from microquasars Cygnus X-1 and Cygnus X-3
Gamma-ray observations of microquasars at high and very-high energies can
provide valuable information of the acceleration processes inside the jets, the
jet-environment interaction and the disk-jet coupling. Two high-mass
microquasars have been deeply studied to shed light on these aspects: Cygnus
X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray
spectral states of black hole transients, where the radiation is dominated by
non-thermal emission from the corona and jets and by thermal emission from the
disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV
using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A
hint of orbital flux modulation was also found, as the source is only detected
in phases around the compact object superior conjunction. We conclude that the
high-energy gamma-ray emission from Cygnus X-1 is most likely associated with
jets and its detection allow us to constrain the production site. Moreover, we
include in the discussion the final results of a MAGIC long-term campaign on
Cygnus X-1 that reaches almost 100 hr of observations at different X-ray
states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring
activity period in radio and high-energy gamma rays, similar to the one that
led to its detection in the high-energy regime in 2009. MAGIC performed
comprehensive follow-up observations for a total of about 70 hr. We discuss our
results in a multi-wavelength context.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Bexco, Busan, Korea (arXiv:1708.05153
Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG "leakage correction"
The problem of interest here is the study of brain functional and effective
connectivity based on non-invasive EEG-MEG inverse solution time series. These
signals generally have low spatial resolution, such that an estimated signal at
any one site is an instantaneous linear mixture of the true, actual, unobserved
signals across all cortical sites. False connectivity can result from analysis
of these low-resolution signals. Recent efforts toward "unmixing" have been
developed, under the name of "leakage correction". One recent noteworthy
approach is that by Colclough et al (2015 NeuroImage, 117:439-448), which
forces the inverse solution signals to have zero cross-correlation at lag zero.
One goal is to show that Colclough's method produces false human connectomes
under very broad conditions. The second major goal is to develop a new
solution, that appropriately "unmixes" the inverse solution signals, based on
innovations orthogonalization. The new method first fits a multivariate
autoregression to the inverse solution signals, giving the mixed innovations.
Second, the mixed innovations are orthogonalized. Third, the mixed and
orthogonalized innovations allow the estimation of the "unmixing" matrix, which
is then finally used to "unmix" the inverse solution signals. It is shown that
under very broad conditions, the new method produces proper human connectomes,
even when the signals are not generated by an autoregressive model.Comment: preprint, technical report, under license
"Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND
4.0)", https://creativecommons.org/licenses/by-nc-nd/4.0
INTEGRAL and XMM-Newton observations towards the unidentified MeV source GRO J1411-64
The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and
its central part, also by XMM-Newton. The data analysis shows no hint for new
detections at hard X-rays. The upper limits in flux herein presented constrain
the energy spectrum of whatever was producing GRO J1411-64, imposing, in the
framework of earlier COMPTEL observations, the existence of a peak in power
output located somewhere between 300-700 keV for the so-called low state. The
Circinus Galaxy is the only source detected within the 4 location error
of GRO J1411-64, but can be safely excluded as the possible counterpart: the
extrapolation of the energy spectrum is well below the one for GRO J1411-64 at
MeV energies. 22 significant sources (likelihood ) were extracted and
analyzed from XMM-Newton data. Only one of these sources, XMMU
J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact
the soft X-ray observations do not cover the full extent of the COMPTEL source
position uncertainty make an association hard to quantify and thus risky. The
unique peak of the power output at high energies (hard X-rays and gamma-rays)
resembles that found in the SED seen in blazars or microquasars. However, an
analysis using a microquasar model consisting on a magnetized conical jet
filled with relativistic electrons which radiate through synchrotron and
inverse Compton scattering with star, disk, corona and synchrotron photons
shows that it is hard to comply with all observational constrains. This and the
non-detection at hard X-rays introduce an a-posteriori question mark upon the
physical reality of this source, which is discussed in some detail
- …
