1,324 research outputs found
A Magnetic Alpha-Omega Dynamo in Active Galactic Nuclei Disks: I. The Hydrodynamics of Star-Disk Collisions and Keplerian Flow
A magnetic field dynamo in the inner regions of the accretion disk
surrounding the supermassive black holes in AGNs may be the mechanism for the
generation of magnetic fields in galaxies and in extragalactic space. We argue
that the two coherent motions produced by 1) the Keplerian motion and 2)
star-disk collisions, numerous in the inner region of AGN accretion disks, are
both basic to the formation of a robust, coherent dynamo and consequently the
generation of large scale magnetic fields. They are frequent enough to account
for an integrated dynamo gain, e^{10^{9}} at 100 gravitational radii of a
central black hole, many orders of magnitude greater than required to amplify
any seed field no matter how small. The existence of extra-galactic, coherent,
large scale magnetic fields whose energies greatly exceed all but massive black
hole energies is recognized. In paper II (Pariev, Colgate, and Finn 2006) we
argue that in order to produce a dynamo that can access the free energy of
black hole formation and produce all the magnetic flux in a coherent fashion
the existence of these two coherent motions in a conducting fluid is required.
The differential winding of Keplerian motion is obvious, but the disk structure
depends upon the model of "alpha", the transport coefficient of angular
momentum chosen. The counter rotation of driven plumes in a rotating frame is
less well known, but fortunately the magnetic effect is independent of the disk
model. Both motions are discussed in this paper, paper I. The description of
the two motions are preliminary to two theoretical derivations and one
numerical simulation of the alpha-omega dynamo in paper II. (Abridged)Comment: 34 pages, 1 figure, accepted by Ap
Recommended from our members
Cyclist 360° Alert: Validation of an Instrumented Bicycle Trajectory Reconstruction Mechanism Using Satellite and Inertial Navigation Systems
Cycling is an increasingly popular mode of travel in cities owing to the great advantages that it offers in terms of space consumption, health and environmental sustainability. However, the number of recent accidents between cyclists and heavy goods vehicles has increased substantially. Our study shows that one of the main causes of accidents is drivers not being able to observe cyclists. Thus, this research reported here involves the development of an innovative low-cost technological solution called Cyclist 360° Alert and as an integral part of this system, this paper focuses on the bicycle localization aspect and presents an approach based on low-cost micro-electromechanical systems (MEMS) sensor con figurations on an instrumented prototype bicycle system, called “iBike”. The iBike has the capability of sensing its motion, which can be then analysed to compute the trajectory path. The paper describes the overall system of the instrumented bicycle which incorporates an Inertial Navigation System (INS) and a Global Navigation Satellite System (GNSS) receiver. The paper then evaluates and compare the accuracy of the three positioning systems using experimental field data. Finally, the paper also draws conclusions on the applicability of specific sensor configurations, both in terms of sensors’ accuracy and reliability with respect to the measurements of motion, and the ability of tracking trajectories based on the data gathered from the sensor
Global unions: chasing the dream or building the reality?
This article takes as its theme the global restructuring of capital and its impact on worker organization. It argues for a reassertion of class in any analysis of global solidarity, and assesses the opportunities and barriers to effective global unionization. Rooted in the UK experience, the article analyzes the impact of the European social dimension on trade unions, before taking the discussion into a global dimension. It concludes by suggesting that there are reasons for cautious optimism in terms of solidarity building, despite difficult historical legacies and the common replacement of action with rhetoric
The spread of the gluon k_t-distribution and the determination of the saturation scale at hadron colliders in resummed NLL BFKL
The transverse momentum distribution of soft hadrons and jets that accompany
central hard-scattering production at hadron colliders is of great importance,
since it has a direct bearing on the ability to separate new physics signals
from Standard Model backgrounds. We compare the predictions for the gluonic
k_t-distribution using two different approaches: resummed NLL BFKL and DGLAP
evolution. We find that as long as the initial and final virtualities (k_t)
along the emission chain are not too close to each other, the NLL resummed BFKL
results do not differ significantly from those obtained using standard DGLAP
evolution. The saturation momentum Q_s(x), calculated within the resummed BFKL
approach, grows with 1/x even slower than in the leading-order DGLAP case.Comment: 24 pages, 8 figures, An improved, slightly more precise NLL
resummation is used and the figures are updated accordingly. The conclusions
are unchange
Essential features of responsible governance of agricultural biotechnology
Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge
Multiparton interactions and production of minijets in high energy hadronic collisions
We discuss the inclusive cross section to produce two minijets with a large
separation in rapidity in high energy hadronic collisions. The contribution to
the inclusive cross section from the exchange of a BFKL Pomeron is compared
with the contribution from the exchange of two BFKL Pomerons, which is induced
by the unitarization of the semi-hard interaction. The effect of the multiple
exchange is studied both as a function of the azimuthal correlation and as a
function of the transverse momentum of the observed minijets.Comment: TeX file, 20 pages, 4 figures available on reques
The Ultimate Fate of Supercooled Liquids
In recent years it has become widely accepted that a dynamical length scale
{\xi}_{\alpha} plays an important role in supercooled liquids near the glass
transition. We examine the implications of the interplay between the growing
{\xi}_{\alpha} and the size of the crystal nucleus, {\xi}_M, which shrinks on
cooling. We argue that at low temperatures where {\xi}_{\alpha} > {\xi}_M a new
crystallization mechanism emerges enabling rapid development of a large scale
web of sparsely connected crystallinity. Though we predict this web percolates
the system at too low a temperature to be easily seen in the laboratory, there
are noticeable residual effects near the glass transition that can account for
several previously observed unexplained phenomena of deeply supercooled liquids
including Fischer clusters, and anomalous crystal growth near T_g
QCD
We discuss issues of QCD at the LHC including parton distributions, Monte
Carlo event generators, the available next-to-leading order calculations,
resummation, photon production, small x physics, double parton scattering, and
backgrounds to Higgs production.Comment: 115 pages, Latex, 47 figures, to appear in the Report of the ``1999
CERN Workshop on SM Physics (and more) at the LHC'', S. Catani, M. Dittmar,
D. Soper, W.J. Stirling, S. Tapprogge (convenors
Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses
The Cooperative Patent Classifications (CPC) jointly developed by the
European and US Patent Offices provide a new basis for mapping and portfolio
analysis. This update provides an occasion for rethinking the parameter
choices. The new maps are significantly different from previous ones, although
this may not always be obvious on visual inspection. Since these maps are
statistical constructs based on index terms, their quality--as different from
utility--can only be controlled discursively. We provide nested maps online and
a routine for portfolio overlays and further statistical analysis. We add a new
tool for "difference maps" which is illustrated by comparing the portfolios of
patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591;
http://link.springer.com/article/10.1007/s11192-017-2449-
A search for periodicity in the light curves of selected blazars
We present an analysis of multifrequency light curves of the sources 2223-052
(3C 446), 2230+114 (CTA 102), and 2251+158 (3C 454.3), which had shown evidence
of quasi-periodic activity. The analysis made use of data from the University
of Michican Radio Astronomy Observatory (USA) at 4.8, 8, and 14.5 GHz, as well
as the Metsahovi Radio Astronomy Observatory (Finland) at 22 and 37 GHz.
Application of two different methods (the discrete autocorrelation function and
the method of Jurkevich) both revealed evidence for periodicity in the flux
variations of these sources at essentially all frequencies. The periods derived
for at least two of the sources -- 2223-052 and 2251+158-- are in good
agreement with the time interval between the appearance of successive VLBI
components. The derived periods for 2251+158 (P = 12.4 yr and 2223-052 (P = 5.8
yr) coincide with the periods found earlier by other authors based on optical
light curves.Comment: 27 pages, 11 figures, accepted for publication in Astronomy Report
- …
