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ABSTRACT

We discuss the inclusive cross section to produce two minijets

with a large separation in rapidity in high energy hadronic col-

lisions. The contribution to the inclusive cross section from

the exchange of a BFKL Pomeron is compared with the con-

tribution from the exchange of two BFKL Pomerons, which is

induced by the unitarization of the semi-hard interaction. The

effect of the multiple exchange is studied both as a function of

the azimuthal correlation and as a function of the transverse

momentum of the observed minijets.
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1. Introduction

One of the main topics in perturbative QCD is presently represented by semi-

hard hadronic interactions, namely by hadron interactions with momentum trans-

fer constant with energy but large enough to apply perturbation theory. One

of the characteristic features of this kinematical regime is the large size of the

corresponding cross sections, which, although in the perturbative domain, rise

rapidly with energy. In fact, already at the energies of present hadron colliders,

one may easily obtain semi-hard cross sections whose size is comparable to the

total hadronic cross section[1,2]. At the partonic level, in a typical interaction

configuration, one of the two interacting partons has a finite fraction of the par-

ent’s hadron momentum while the other one has a momentum fraction close to

zero. The separation in rapidity of the two partons is therefore increasingly large

with energy and, in the parton-parton c.m. system, the transverse momentum

exchange is small with respect to the longitudinal momenta. The Regge limit is

then approached in semi-hard interactions not only in the whole hadron-hadron

process but also in the underlying parton-parton interactions.

When considering the large pt regime the momentum exchange is of the order

of the incoming partons momenta. At the parton level such a large scale factor

can be transferred only in a few interaction vertices and, as a result, the elastic

two body parton collision is a good first order approximation to the elementary

partonic interaction. In the semi-hard regime, since the semi-hard scale is small

with respect to the total energy available, there are several parton vertices with

momentum exchange of the order of the semi-hard scale. A consequence is that all

semi-hard radiated gluons are to be taken explicitly into account for a proper fac-

torization of the semi-hard component of the interaction. When the 2→ n, rather
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than the 2 → 2, is the parton subprocess relevant to the semi-hard component

of the hadronic interaction, a difficulty arises in constructing an inclusive cross

section, where only few of the radiated partons are actually detected as mini-jets

in the final state. In fact one is not allowed any more to use the lowest order

tree diagram to represent the parton amplitude, since the tree level amplitude is

singular in the soft and collinear limit. To avoid the infrared problem one faces

when evaluating an inclusive cross section, one needs to keep virtual corrections

explicitly into account and, as a consequence, the elementary subprocess acquires

a non trivial structure. The problem has been addressed already several years ago

in a series of papers by Lipatov and collaborators[3] . Lipatov’s solution is the

BFKL Pomeron: the partonic interaction is described by the exchange of a gluon

ladder structure with vacuum quantum numbers in the t-channel. The s-channel

discontinuity of the BFKL Pomeron represents the production of the semi-hard

gluons. In the limit in which the transverse momenta are always negligible with

respect to the longitudinal ones, the steps of the ladder are ordered in rapidity

and dynamics is greatly simplified. Indeed the simplified kinematics lets one to

isolate the two basic elements which build up the ladder:

a- The gauge independent non-local vertices, which keep into account the domi-

nant term, in the t/s→ 0 limit, of the diagrams with gluon emission from all

near-by lines, and

b- the Reggeization of the t-channel gluons, which is the virtual correction that

allows a solution to the infrared problem.

The ladder structure can be iterated in the t-channel, which may be expressed as

an integral equation, the Lipatov’s equation. Lipatov’s equation allows an analytic

solution free from infrared (and ultraviolet) singularities. One obtains in this way

an explicit expression for the cross section where two gluons interact producing
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many gluons and two of them, the ones nearby in rapidity to the interacting

partons, are observed. If y is the separation in rapidity of the interacting gluons

and ka, kb are the transverse momenta of the observed ones, the inclusive cross

section can be expressed as

dσ̂

d2kad2kb
=

[
CAαs
k2
a

]
f(ka, kb, y)

[
CAαs
k2
b

]
(1)

where CA = Nc is the number of colors, αs is the strong coupling constant and

f(ka, kb, y) is the inverse Laplace transform of the solution to Lipatov’s equation.

Actually:

f(ka, kb, y) =
1

(2π)2kakb

+∞∑
n=−∞

einφ
∫ +∞

−∞
dνeω(ν,n)yeiνln(k2

a/k
2
b) (2)

where φ is the azimuthal angle between the observed gluons,

ω(ν, n) = −2
αsNc
π
<

[
ψ
( | n | +1

2
+ iν

)
− ψ(1)

]
(3)

and

ψ(z) =
dlnΓ(z)

dz
(4)

is the Digamma function. The inclusive cross section for production of two mini-

jets, as a result of a BFKL Pomeron exchange, is obtained by folding Eq.(1) with

the structure functions of the interacting hadrons A and B:

dσ

dxAdxBd2kad2kb
= feff (xA, k

2
a)feff(xB, k

2
b )

dσ̂

d2kad2kb
(5)

where feff is the effective structure function
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feff (x) = G(x) +
4

9

∑
f

[
Qf (x) + Q̄f (x)

]
(6)

namely the gluon structure function plus 4/9 of the quark and anti-quark structure

functions with flavour f . The expression for the cross section in Eq.(1) correlates

the azimuthal angle φ with the distance in rapidity of the observed partons. The

differential cross section in Eq.(1) may be easily integrated, at φ fixed, on ka and

kb down to the lower cut off km, which represents the threshold in transverse

momentum that allows a parton to be observed as a minijet in the final state.

This yields:

dσ̂

dφ
=

(CAαs)
2

2π

1

k2
m

+∞∑
n=−∞

einφ
∫ +∞

−∞
dν
eω(ν,n)y

1 + 4ν2
(7)

which is a suitable expression to study the azimuthal correlation of the observed

partons as a function of the rapidity difference y. Simple expressions may also be

obtained for the cross section where the momentum of one of the two observed

gluons has been integrated down to the lower limit km:

dσ̂

d2ka
=

(CAαs)
2

2π

1

k3
akm

∫ +∞

−∞
dν
eω(ν,0)y

2iν + 1

(
ka
km

)2iν

(8)

and for the cross section where both observed gluons momenta have been inte-

grated down to km:

σ̂ =
(CAαs)

2

k2
m

∫ +∞

−∞
dν
eω(ν,0)y

1 + 4ν2
(9)

The high energy behaviour of the integrated cross section is estimated by evalu-

ating the asymptotic limit of the integral in Eq.(9) for large y[4]:

σ̂ →
π(CAαs)

2

2k2
m

exp
[
4ln2Ncαsy/π

][
7ζ(3)Ncαsy/2

]1/2 (10)
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where ζ is the Riemann zeta function. Eq.(10) shows a rapid growth, roughly linear

with the parton-parton c.m. energy, of the partonic cross section corresponding

to the exchange of a BFKL Pomeron and gives a justification to the large size of

the semi-hard cross section.

The possibility to describe the elementary parton process by means of Lipa-

tov’s dynamics has been considered recently in a series of papers[5]. One of the

main points of interest is the search for clear signatures of the underlying par-

ton dynamics in the final state of high energy hadronic collisions. Correlations

in transverse momentum and azimuthal angle, as a function of the distance in

rapidity y of final state minijets, have been therefore estimated according to the

expectations of the Lipatov’s picture of the interaction as expressed by Eq.(7) and

(8)[6]. On the other hand, to approach Lipatov’s limit, one needs to keep the lower

threshold of the transverse momenta of the observed minijets as small as possible,

compatibly with the requirement of being still in the perturbative regime. As

shown by Eq.(10) smaller values of km correspond to larger values of σ̂. As a

consequence of the larger probability of the elementary partonic intercourse one is

therefore forced to take into account the possibility of having several elementary

partonic collisions in each inelastic hadronic event, in order to implement unitarity.

In the present paper, by assuming the validity of the AGK cutting rules in

semi-hard interactions, we unitarize the semi-hard cross section and we derive the

most general correction term to the inclusive cross section in Eq.(5). The correla-

tions among the minijets observed in the final state are then estimated, considering

the simplest possibility of multiple parton interaction, and are compared with the

expectation from the single BFKL Pomeron exchange. The paper is organized as

follows: in the next section the unitarity correction to the single scattering term is

derived. In the following paragraph a few numerical estimates are presented, with
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the purpose of giving an indication on the kinematical region where corrections

can be expected to become sizeable. In the last section the general features of

the unitarization of the single scattering term are summarized and a few general

conclusions are drawn.

2. General framework for muliparton interactions

In order to approach the problem of multiparton interactions, with the pur-

pose of obtaining for the inclusive cross section an expression which is more general

with respect to Eq.(5), we find it appropriate to introduce a functional formalism,

which keeps to a minimum level the occurrence of cumbersome expressions. As a

preliminary step, we show how to derive all the relevant inclusive cross sections in

the simple case of a single parton-parton collision with fixed fractional longitudinal

momenta (x, x′). Let us introduce the functional

Θ̂[x, x′; z] ≡
∑
n

∫
dσ̂n(x, x′)

dk1 . . . dkn
z(k1) . . . z(kn)dk1 . . . dkn (11)

where z is the argument of the functional and dσ̂n is the differential cross section

to produce n partons with momenta (k1, . . . , kn). Obviously the value of the

functional for z = 1 is the semi-hard parton cross section σ̂(x, x′). Actually

Θ̂[x, x′; 1] = σ̂(x, x′) (12)

All the inclusive cross sections are generated by taking an appropriate number of

functional derivatives of the generating functional with respect to z[7]:

dσ̂(x, x′)incl

dk1 . . . dkn
=

δΘ̂[x, x′; z]

δz(k1) . . . δz(kn)

∣∣∣∣
z=1

. (13)

6



To obtain the inclusive cross section in the case of the actual hadronic collision

a more elaborate analysis is needed. In the case of soft interactions multi-Reggeon

exchanges are conveniently taken into account by making use of the AGK cutting

rules[8]. Although no general proof of their validity is available in the case of

semi-hard interactions, it has nevertheless been possible to show that the cutting

rules hold for one of the components of the interaction which is leading in the

large-ŝ fixed-t̂ limit[9]. If one assumes the validity of the cutting rules for semi-

hard interactions, one is allowed to represent the semi-hard cross section σH as

a probabilistic distribution of multiple semi-hard parton collisions[10]. The most

general expression for σH requires however the introduction of the whole infinite

set of multiparton distributions[11], which keep into account hadron fluctuations

in the parton number:

σH =

∫
d2βσH(β)

σH(β) =

∫ ∑
n

∑
m

1

n!
W

(n)
A (u1 . . . un)

1

m!
W

(m)
B (u′1 − β . . . u

′
m − β)

×
{

1−
n∏
i=1

m∏
j=1

[
1− σ̂(ui, u

′
j)
]}∏

dudu′
(14)

Here the W (k)(u1 . . . uk) are the exclusive k-body parton distribution, namely the

probabilities to find a hadron in a fluctuation with k partons with coordinates

u1 . . . uk, ui ≡ (bi, xi) standing for the transverse partonic coordinate (bi) and lon-

gitudinal fractional momentum (xi). β is the impact parameter between the two

interacting hadrons and σ̂(ui, u
′
j), represents the probability for the parton i of

the A-hadron to have an hard interaction with the parton j of the B-hadron. The

semi-hard cross section is constructed by summing over all possible partonic con-

figurations of the two interacting hadrons (the sums over n and m) and, for each
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configuration with n A-partons and mB-partons, summing over all possible multi-

ple partonic interactions. This last sum is constructed by asking for the probability

of no interaction between the two configurations (actually
∏n
i=1

∏m
j=1[1− σ̂i,j] ).

The difference from one of the probability of no interaction gives the sum over all

semi-hard interactions. σH(β) is then the probability to have at least one semihard

parton interaction when the impact parameter in the hadronic collision is equal to

β. The semi-hard cross section is obtained by integrating the probability σH(β)

on the impact parameter. Analogously, the elementary semi-hard cross section

σ̂(x, x′) is obtained by integrating the elementary interaction probability σ̂(u, u′)

on the relative transverse coordinate b−b′. The expansion of σH(β) as a sum on

multiple interactions reads:

σH(β) =

∫ ∑
n

∑
m

1

n!
W

(n)
A (u1 . . . un)

1

m!
W

(m)
B (u′1 − β . . . u

′
m − β)

×S
Q∑

N=1

(
Q

N

)
σ̂1 . . . σ̂N (1− σ̂N+1) . . . (1− σ̂Q)

(15)

S is a symmetrizing operator, which one may conveniently introduce taking ad-

vantage of the symmetry of W (k) for permutations of the arguments[12], and the

index N counts the interactions which, for a given configuration with n A-partons

and m B-partons, range in number from 1 to Q = nm. As a matter of fact,

the main advantage of Eq.(15) is the clear separation between real and virtual

contributions to the semihard cross section. More precisely, after summing, ac-

cording with the AGK cutting rules, over all discontinuities of the semi-hard am-

plitudes, which contribute to the inelastic process of interest, the product σ̂1 . . . σ̂N

is the remnant of the contribution from the real production terms. The product

(1− σ̂N+1) . . . (1− σ̂Q) is, on the contrary, the remnant of the contribution of the
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virtual corrections[13]. The replacement σ̂k → Θ̂k[z] in the former product, cor-

responding to the real production process, allows one to generalize the functional

in Eq.(11) and to obtain the inclusive cross sections in the most general case of

multiple parton interactions. One may therefore write

ΘH [β; z] =

∫ ∑
n

∑
m

1

n!
W

(n)
A (u1 . . . un)

1

m!
W

(m)
B (u′1 . . . u

′
m)

×S
Q∑

N=1

(
Q

N

)
Θ̂1[z] . . . Θ̂N [z](1− σ̂N+1) . . . (1− σ̂Q)

∏
dudu′

(16)

which gives the required inclusive cross sections via the relation

dσinclH

dk1 . . . dkn
=

∫
d2β

δΘH [β; z]

δz(k1) . . . δz(kn)

∣∣∣∣
z=1

. (17)

For later convenience ΘH [β; z] can also be expressed as

ΘH [β; z] =

∫ ∑
n

∑
m

1

n!
W

(n)
A (u1 . . . un)

1

m!
W

(m)
B (u′1 − β . . . u

′
m − β)

×
{ n∏
i=1

m∏
j=1

[
1 + Θ̂[ui, u

′
j; z]− σ̂(ui, u

′
j)
]

−
n∏
i=1

m∏
j=1

[
1− σ̂(ui, u

′
j)
]}∏

dudu′

(18)

We are now in a position to discuss the processes we are interested in, namely

the events in which only two mini-jets are tagged. By setting n = 2 in Eq. (17)

and using the second expression for ΘH [β; z], a lengthy but simple algebra yields
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dσinclH (β)

dk1dk2
=

∫
D

(1)
A (u)D

(1)
B (u′ − β)

dσ̂(u, u′)

dk1dk2
dudu′

+

∫
D

(2)
A (u, v)D

(2)
B (u′ − β, v′ − β)

dσ̂(u, u′)

dk1

dσ̂(v, v′)

dk2
dudu′dvdv′

+

∫
D

(1)
A (u)D

(2)
B (u′ − β, v′ − β)

dσ̂(u, u′)

dk1

dσ̂(u, v′)

dk2
dudu′dv′

+

∫
D

(2)
A (u, v)D

(1)
B (u′ − β)

dσ̂(u, u′)

dk1

dσ̂(v, u′)

dk2
dudvdu′

(19)

where D(1)(u) and D(2)(u, v) are the one-body and two-body inclusive distribu-

tions [10]:

D(1)(u) = W (1)(u) +

∫
W (2)(u, u′)du′ +

1

2

∫
W (3)(u, u′, u′′)du′du′′ + . . .

D(2)(u1, u2) = W (2)(u1, u2) +

∫
W (3)(u1, u2, u

′)du′

+
1

2

∫
W (4)(u1, u2, u

′, u′′)du′du′′ . . .

(20)

In the r.h.s. of Eq. (19) every term has a clear physical interpretation. The

first convolution is nothing but the usual single-collision contribution to the semi-

hard cross section. The second term corresponds to two disconnected partonic

collisions; finally, the last two entries correspond to those events in which a parton

from hadron A or B has suffered a rescattering on hadron B or A respectively.

From ref.[14] we know that the average number of rescatterings can be safely

neglected in a typical hadron-hadron collision and for values of km which allow

the final state parton to be observed as an actual minijet in the final state. We are

therefore allowed to neglect the last two terms in the r.h.s. of Eq. (19). The two-

body inclusive distribution D(2) may be expressed by introducing the two body

parton correlation C(2):
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D(2)(u1, u2) ≡ D(1)(u1)D(1)(u2) +
1

2
C(2)(u1, u2) (21)

If one neglects both rescatterings and correlations in Eq.(19), one is left with the

following simplified expression for the inclusive cross section:

dσinclH

dk1dk2
=

∫
d2β
[
D

(1)
A ⊗

dσ̂

dk1dk2
⊗D(1)

B

+
(
D

(1)
A ⊗

dσ̂

dk1
⊗D(1)

B

)(
D

(1)
A ⊗

dσ̂

dk2
⊗D(1)

B

)] (22)

where ⊗ is a compact notation for the convolutions appearing in Eq. (19). A

possible further simplification follows from the assumption that D(1)(u) has the

factorized form

D(1)(x, b) = feff (x)F (b) (23)

with the obvious normalizing condition

∫
d2bF (b) = 1 (24)

By substituting Eq. (23) in Eq. (22) one obtains

dσinclH

dk1dk2
=

dσs
dk1dk2

+
1

σeff

dσs
dk1

dσs
dk2

(25)

where

1

σeff
≡

∫
d2β
[∫

d2bF (b)F (b− β)
]2

(26)

and dσs is the single collision expression, obtained by convoluting the elementary

cross section with the usual one-body parton distribution feff (x).

3. Numerical estimates
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The formalism described in the previous section is a rather general approach

to the problem of unitarity corrections in semi-hard interactions. Indeed the ex-

pression for the inclusive cross section in Eq.(19) is completely general in the

probabilistic picture of the semi-hard hadronic interaction. It is an exact conse-

quence of the cross section as expressed in Eq.(14), which finds its justification in

the AGK cutting rules[8]. In the inclusive cross section given by Eq.(19) all pos-

sible multiple parton collisions are kept into account and multiparton correlations

are treated at all orders. Consistently with the general principles, namely with

the AGK cancellation[8,15], the double inclusive cross section depends only on

the single and double scattering terms. For a quantitative estimate of the role of

unitarity corrections to the single scattering term, the required non perturbative

input is represented both by the one-body parton distribution D(1) and by the

two-body parton distribution D(2). The two-body parton distribution contains

an independent information on the hadron structure with respect to D(1), actu-

ally the two-body parton correlation C(2). While no experimental information is

presently available on C(2) an indication is available from CDF on the scale fac-

tor σeff which characterizes the double parton interactions[16]. We will therefore

limit our numerical analysis to the simplified case where C(2) is neglected and

only disconnected parton collisions are taken into account, in such a way that the

inclusive cross section is expressed by Eq.(25). All unitarity corrections to single

scattering are therefore expressed by the second term in Eq.(25), which is obtained

with the same input needed to evaluate the single scattering term, apart from the

scale factor σeff , that summarizes all the geometrical details which enter in the

unitarity correction.

A few qualitative considerations are appropriate before illustrating the results

of a quantitative analysis. By introducing the jet rapidities (ya, yb) and integrating
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in the transverse momenta down to the lower cut off km, while keeping fixed the

azimuthal angle between the observed minijets φ, the inclusive cross section is

expressed as:

dσinclH

dφdyadyb
=

dσs
dφdyadyb

+
1

σeff

1

2π

dσs
dya

dσs
dyb

(27)

In the limit of small relative rapidities y = ya − yb, a parton-parton interaction

produces only two final state partons. Since they are back-to -back in φ, the single

collision expression dσs/dφdyadyb is proportional to a Dirac delta δ(φ− π). This

can be easily verified by setting y = 0 in Eq.(7). On the opposite side, that is,

for large values of y, the leading contribution to the r.h.s. of Eq.(7) comes from

the n = 0 term, for which the partons are decorrelated in φ. Physically, this

is due to the large number of gluons radiated in the parton-parton interaction.

Indeed, the flattening of the φ distribution with increasing dijet rapidity gap was

suggested[6] as a signature for the BFKL dynamics. From this point of view, a

multiple partonic collision represents a background process which mimics the effect

of multigluon emission. In the r.h.s. of Eq. (27), this background is described

by the term weighted by the scale factor 1/σeff . The experimental indication on

the scale factor is 5.4 < σeff < 29mb (90% C.L.)[16]. Unfortunately σeff is not

the only input variable which is still rather uncertain for a numerical computation.

Indeed there is a large ambiguity already to compute the single scattering term. In

fact to obtain the Lipatov’s solution one needs to neglect the running of the strong

coupling constant, in such a way that αs has to be considered as a parameter in

the actual evaluation of σ̂. Since the dependence of σ̂ on αs, as it may be seen

in Eq.(10), is exponential a numerical comparison of the two terms in Eq.(27) is

rather uncertain.
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To have a quantitiative feeling of the importance of the unitarity correction we

have tried to estabilish a possible sensible choice of the input values of σeff and

αs by making a comparison with available experimental data. The experimental

points in fig.1 are the values of the cross section for production of minijets with

km ≥ 5GeV measured by UA1[2]. The dashed curves refer to the single scattering

integrated cross section with αs = .34 (upper curve) and αs = .29 (lower curve),

corresponding to the values of the running coupling constant at the scale
√
Q2 =

km/3 and
√
Q2 = km/2 respectively. The structure functions are the HMRS(B)

structure functions[17]. The unitarized expression for the semihard cross section

has a simple analytical representation when semi-hard rescatterings and multi-

parton correlations are neglected[10]. Actually:

σH =

∫
d2β

(
1− exp

[
σs

∫
FA(b)FB(b− β)d2b

])
(28)

where σs is the integrated single scattering inclusive cross section. The continuous

curves in fig.1 refer to the unitarized cross section σH , as expressed in Eq.(28). For

F (b) we have taken a gaussian, the width corresponding to a value of σeff = 20mb.

The two curves refer to the two different choices of αs mentioned above. The

region identified by the two continuous lines contains the experimental points and

therefore gives an indication on possible meaningful input parameters. One may

also observe in fig.1 how the rise of the experimental cross section is much closer

to the rise of the unitarized curves than to the rise of the single scattering term

alone.

Before moving to different values of energy it is worthy to briefly comment on

km, which, to some extent, is a free parameter. A low value of km corresponds to

semi-hard cross sections that are well above σeff (in the single collision approx-

imation). In this conditions the contribution from multiple scatterings is largely
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dominant and the φ distribution is practically flat. On the contrary, large values

of km correspond to semi-hard cross sections that are negligible with respect to

σeff and no unitarity correction is required. Keeping this in mind, we realize that

the interesting values of km are those for which the total semi-hard cross section

is comparable to σeff . This criterion yields km ' 5.2÷ 6.1GeV at
√
s = 1.8TeV

and km ' 11.2÷12.7GeV at
√
s = 18TeV , depending on the two different choices

of values for αs which we have considered and for σeff = 20mb.

In order to have some quantitative indication on the effect that unitarization

produces on the expectations based on the BFKL dynamics, we have studied the

azimuthal correlation of the observed minijets, which, according with the BFKL

dynamics has a distinctive dependence on the distance in rapidity. In fig. (2-a,b)

we have plotted the differential cross section Eq.(27) as a function of φ, for fixed

rapidities (ya, yb) at
√
s = 1.8TeV (a) and

√
s = 18TeV (b) (the normalization

is such that the curves take a value equal to unity at φ = 0 and φ = 2π). The

naive φ distribution, obtained by considering one elementary interaction only, is

represented by the dashed line, while the continuous line describes the corrected

distribution which takes into account an arbitrary number of parton-parton col-

lisions. The flattening caused by the unitarity corrections is clearly visible: at

√
s = 1.8TeV , fig. (2-a), the height of the central peak at φ = π is reduced by a

factor three approximately; the same trend, but with a stronger suppression of the

correlation, is present at higher energies, see fig. (2-b). Figure (3) shows how the

effect of unitarity corrections depends on the cutoff km. By lowering this threshold

we increase the semi-hard cross section and, accordingly, we enhance the probabil-

ity of having several elementary parton collisions in each inelastic hadronic event.

As a consequence, we expect the tagged minijets to become less and less corre-

lated in the azimuthal angle φ. This is confirmed by our plot which corresponds

15



to
√
s = 1.8TeV and to a rapidity gap y = 5, actually ya = 2.5 and yb = −2.5.

The different choices of the cut off km are km = 7GeV (solid line), km = 6GeV

(dashed line) and Km = 5GeV (dotted line). It is worthwhile to stress that, for

the lower choice km = 5GeV , we cannot distinguish the φ distribution from a

uniform one, unless we perform a quite accurate measure at the 3% level. Finally,

fig. (4) shows how the correlation in the azimuthal angle of the tagging jets fades

away as the rapidity interval is increased.

4. Conclusions

Minijet physics is the ideal tool to study BFKL dynamics. Indeed one comes

closer and closer to the BFKL limiting case by keeping the lower threshold in

transverse momentum km of the observed minijets as small as possible. However

the region of small km is also the region where unitarity corrections become in-

creasingly important. In the present paper we have made an attempt to estimate

the unitarity corrections to the inclusive cross section for producing two minijets.

After assuming the validity of the AGK cutting rules in semihard interactions,

we have kept into account unitarity corrections by representing the hadronic pro-

cess as a probabilistic superposition of multiple BFKL Pomeron exchanges. In

the case of the inclusive cross section for producing two minijets, only the sin-

gle and the double scattering terms contribute. With the purpose of making a

quantitative estimate, we have considered the simplest possibility for the double

scattering contribution. Actually we have neglected semi-hard parton rescatter-

ings in the interaction, and two-body parton correlations in the two-body inclusive

distributions. In this simplified case the unitarity correction depends on one sin-

gle parameter only, namely σeff , that is the scale factor one needs to introduce

in order to obtain the probability of the double interaction. For a quantitative
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illustration of the effect of the correction term, a second parameter which has to

be fixed is the strong coupling constant αs, whose value is not determined by the

BFKL dynamics. Keeping into account the experimental suggestion on σeff [16],

we have fixed the input parameters by comparing with the UA1 measurement of

the semihard cross section for production of minijets[2]. Having selected in this

way a possible range of values for the parameters, the indication we obtain from

our numerical estimate is that at Tevatron energy the correction term to the single

BFKL Pomeron exchange, depending on the actual quantity one is considering,

may be larger than 100% for minijets with km ' 6GeV . When moving at LHC

energies the same correction applies with values of km ' 12GeV . It is worthwhile

noticing that, at Tevatron energy and with km ' 6GeV the average invariant mass

of a partonic interaction is ' .2TeV , while at LHC energies and with km ' 12GeV ,

the average invariant mass is ' 1TeV . The expectation is therefore that a sec-

ondary BFKL Pomeron is exchanged in a large fraction of parton interactions at

those values of invariant mass and at the corresponding hadron-hadron c.m. en-

ergy. A detailed experimental analysis of minijet production at Tevatron would

therefore be of great importance both as a test of the BFKL approach, and to ac-

cess the non perturbative information on the hadron structure which enters in the

multiple parton interactions, whose detailed knowledge is of growing importance

to understand hadron dynamics at higher energies.
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Figure captions

Fig. 1: Cross section for production of minijets with km ≥ 5GeV . Experimental data

from UA1[2]. Dashed curves: single BFKL Pomeron exchange with αs = .34

(upper curve) and αs = .29 (lower curve). Continuous curves: unitarized

cross section, Eq.(28) in the text, same values of αs as in the previous case

and σeff = 20mb.

Fig. 2: φ distribution with unitarity corrections included (solid line) and in the single

collision approximation (dashed line). N(φ) is proportional to the differential

cross section given by eq. (27), with minijet rapidities kept fixed at ya = 2.5

and yb = −2.5. The normalization is such that N(0) = N(2π) = 1.

Fig. 3: φ distribution for several choices of the cutoff: kmin = 7GeV (solid line),

kmin = 6GeV (dashed line), kmin = 5GeV (dotted line). N(φ) is defined as

in Fig. (2) and unitarity corrections are included.

Fig.4: φ distribution for different choices of the rapidity gap. The cutoff is kmin =

7GeV and the minijet rapidities are fixed at ya,b = ±2.5 (solid line) and

ya,b = ±3.5 (dashed line).
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