42 research outputs found

    Lidar measurements of ozone in the upper troposphere - lower stratosphere at Siberian lidar station in Tomsk

    Get PDF
    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors

    Measurement of ozone concentration in the lower stratosphere - upper troposphere

    Get PDF
    We describe an ozone lidar and consider an algorithm for retrieving the ozone concentration, taking into consideration the aerosol correction. Results of lidar measurements at wavelengths 299 and 341 nm well agree with model estimates, indicating that ozone is sensed with acceptable accuracies in the altitude range of about 6-18 km. It should be noted that the retrieved profiles of altitude distribution of ozone concentration more closely resemble those from satellite data than according to Krueger model. A lidar is developed and put into operation at Siberian Lidar Station (SLS) to measure the vertical ozone distribution (VOD) in the upper troposphere-lower stratosphere. Sensing is performed according to the method of differential absorption and scattering at wavelength pair 299/341 nm, which are respectively the first and second Stokes components of stimulated Raman scattering (SRS) conversion of the fourth harmonic of Nd:YAG laser (266 nm) in hydrogen

    DIAL measurements of the vertical ozone distribution at the Siberian lidar station

    Get PDF
    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors

    Controlled Transformation of Electrical, Magnetic and Optical Material Properties by Ion Beams

    Full text link
    Key circumstance of radical progress for technology of XXI century is the development of a technique which provides controllable producing three-dimensional patterns incorporating regions of nanometer sizes and required physical and chemical properties. Our paper for the first time proposes the method of purposeful direct transformation of the most important substance physical properties, such as electrical, magnetic, optical and others by controllable modification of solid state atomic constitution. The basis of the new technology is discovered by us effect of selective atom removing out of thin di- and polyatomic films by beams of accelerated particles. Potentials of that technique have been investigated and confirmed by our numerous experiments. It has been shown, particularly, that selective atom removing allows to transform in a controllable way insulators into metals, non-magnetics into magnetics, to change radically optical features and some other properties of materials. The opportunity to remove selectively atoms of a certain sort out of solid state compounds is, as such, of great interest in creating technology associated primarily with needs of nanoelectronics as well as many other "nano-problems" of XXI century.Comment: 22 pages, PDF, 9 figure

    Total volcanic stratospheric aerosol optical depths and implications for global climate change

    Get PDF
    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be −0.19 ± 0.09 Wm−2. This translates into an estimated global cooling of 0.05 to 0.12°C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km

    Lidar Observations of Aerosol Disturbances of the Stratosphere over Tomsk (56.5∘N; 85.0∘E) in Volcanic Activity Period 2006–2011

    Get PDF
    The lidar measurements (Tomsk: 56.5∘N; 85.0∘E) of the optical characteristics of the stratospheric aerosol layer (SAL) in the volcanic activity period 2006–2011 are summarized and analyzed. The background SAL state with minimum aerosol content, observed since 1997 under the conditions of long-term volcanically quiet period, was interrupted in October 2006 by series of explosive eruptions of volcanoes of Pacific Ring of Fire: Rabaul (October 2006, New Guinea); Okmok and Kasatochi (July-August 2008, Aleutian Islands); Redoubt (March-April 2009, Alaska); Sarychev Peak (June 2009, Kuril Islands); Grimsvötn (May 2011, Iceland). A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions. Trends of variations in the total ozone content are also considered

    >

    No full text

    Lidar measurements of ozone in the upper troposphere - lower stratosphere at Siberian lidar station in Tomsk

    No full text
    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors

    DIAL measurements of the vertical ozone distribution at the Siberian lidar station

    No full text
    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors
    corecore