834 research outputs found

    Deep VULMAN: A Deep Reinforcement Learning-Enabled Cyber Vulnerability Management Framework

    Get PDF
    Cyber vulnerability management is a critical function of a cybersecurity operations center (CSOC) that helps protect organizations against cyber-attacks on their computer and network systems. Adversaries hold an asymmetric advantage over the CSOC, as the number of deficiencies in these systems is increasing at a significantly higher rate compared to the expansion rate of the security teams to mitigate them in a resource-constrained environment. The current approaches are deterministic and one-time decision-making methods, which do not consider future uncertainties when prioritizing and selecting vulnerabilities for mitigation. These approaches are also constrained by the sub-optimal distribution of resources, providing no flexibility to adjust their response to fluctuations in vulnerability arrivals. We propose a novel framework, Deep VULMAN, consisting of a deep reinforcement learning agent and an integer programming method to fill this gap in the cyber vulnerability management process. Our sequential decision-making framework, first, determines the near-optimal amount of resources to be allocated for mitigation under uncertainty for a given system state and then determines the optimal set of prioritized vulnerability instances for mitigation. Our proposed framework outperforms the current methods in prioritizing the selection of important organization-specific vulnerabilities, on both simulated and real-world vulnerability data, observed over a one-year period.Comment: 12 pages, 3 figure

    Condensation of charged bosons in plasma physics and cosmology

    Full text link
    The screening of impurities in plasma with Bose-Einstein condensate of electrically charged bosons is considered. It is shown that the screened potential is drastically different from the usual Debye one. The polarization operator of photons in plasma acquires infrared singular terms at small photon momentum and the screened potential drops down as a power of distance and even has an oscillating behavior, similar to the Friedel oscillations in plasma with degenerate fermions. The magnetic properties of the cosmological plasma with condensed W-bosons are also discussed. It is shown that W-bosons condense in the ferromagnetic state. It could lead to spontaneous magnetization of the primeval plasma. The created magnetic fields may seed galactic and intergalactic magnetic fields observed in the present-day universe.Comment: 9 pages, invited talk at the International Seminar "Quarks 2010", Kolomna, Russia, June, 6-12, 201

    Secure Metric-Based Index for Similarity Cloud

    Get PDF
    We propose a similarity index that ensures data privacy and thus is suitable for search systems outsourced in a cloud. The proposed solution can exploit existing efficient metric indexes based on a fixed set of reference points. The method has been fully implemented as a security extension of an existing established approach called M-Index. This Encrypted M-Index supports evaluation of standard range and nearest neighbors queries both in precise and approximate manner. In the first part of this work, we analyze various levels of privacy in existing or future similarity search systems; the proposed solution tries to keep a reasonable privacy level while relocating only the necessary amount of work from server to an authorized client. The Encrypted M-Index has been tested on three real data sets with focus on various cost components

    Implementation of NMR quantum computation with para-hydrogen derived high purity quantum states

    Full text link
    We demonstrate the first implementation of a quantum algorithm on a liquid state nuclear magnetic resonance (NMR) quantum computer using almost pure states. This was achieved using a two qubit device where the initial state is an almost pure singlet nuclear spin state of a pair of 1H nuclei arising from a chemical reaction involving para-hydrogen. We have implemented Deutsch's algorithm for distinguishing between constant and balanced functions with a single query.Comment: 7 pages RevTex including 6 figures. Figures 4-6 are low quality to save space. Submitted to Phys Rev

    On the Ground State of Electron Gases at Negative Compressibility

    Full text link
    Two- and three-dimensional electron gases with a uniform neutralizing background are studied at negative compressibility. Parametrized expressions for the dielectric function are used to access this strong-coupling regime, where the screened Coulomb potential becomes overall attractive for like charges. Closely examining these expressions reveals that the ground state with a periodic modulation of the charge density, albeit exponentially damped, replaces the homogeneous one at positive compressibility. The wavevector characterizing the new ground state depends on the density and is complex, having a positive imaginary part, as does the homogeneous ground state, and real part, as does the genuine charge density wave.Comment: 6 double-column pages, 2 figures. 2nd version is an extension of the 1st one, giving more detail

    The Long-Term Structure of Commodity Futures

    Get PDF
    Futures markets on agricultural commodities typically trade with maximum maturity dates of less than four years. If these markets did trade with maturities eight or ten years distant, futures prices would have value as price forecasts and as a way to structure long-term swaps and insurance contracts. Agricultural commodity markets generally exhibit mean reversion in spot prices and convenience yields. Spot markets also exhibit seasonality. This study develops and implements a procedure to generate long-term futures curves from existing futures prices. Data on lean hogs and soybeans are used to show that the method provides plausible results

    Recent Assembly of an Imprinted Domain from Non-Imprinted Components

    Get PDF
    Genomic imprinting, representing parent-specific expression of alleles at a locus, raises many questions about how—and especially why—epigenetic silencing of mammalian genes evolved. We present the first in-depth study of how a human imprinted domain evolved, analyzing a domain containing several imprinted genes that are involved in human disease. Using comparisons of orthologous genes in humans, marsupials, and the platypus, we discovered that the Prader-Willi/Angelman syndrome region on human Chromosome 15q was assembled only recently (105–180 million years ago). This imprinted domain arose after a region bearing UBE3A (Angelman syndrome) fused with an unlinked region bearing SNRPN (Prader-Willi syndrome), which had duplicated from the non-imprinted SNRPB/B′. This region independently acquired several retroposed gene copies and arrays of small nucleolar RNAs from different parts of the genome. In their original configurations, SNRPN and UBE3A are expressed from both alleles, implying that acquisition of imprinting occurred after their rearrangement and required the evolution of a control locus. Thus, the evolution of imprinting in viviparous mammals is ongoing

    Supervision and feedback for junior medical staff in Australian emergency departments: findings from the emergency medicine capacity assessment study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical supervision and feedback are important for the development of competency in junior doctors. This study aimed to determine the adequacy of supervision of junior medical staff in Australian emergency departments (EDs) and perceived feedback provided.</p> <p>Methods</p> <p>Semi-structured telephone surveys sought quantitative and qualitative data from ED Directors, Directors of Emergency Medicine Training, registrars and interns in 37 representative Australian hospitals; quantitative data were analysed with SPSS 15.0 and qualitative data subjected to content analysis identifying themes.</p> <p>Results</p> <p>Thirty six of 37 hospitals took part. Of 233 potential interviewees, 95 (40.1%) granted interviews including 100% (36/36) of ED Directors, and 96.2% (25/26) of eligible DEMTs, 24% (19/81) of advanced trainee/registrars, and 17% (15/90) of interns. Most participants (61%) felt the ED was adequately supervised in general and (64.2%) that medical staff were adequately supervised. Consultants and registrars were felt to provide most intern supervision, but this varied depending on shift times, with registrars more likely to provide supervision on night shift and at weekends. Senior ED medical staff (64%) and junior staff (79%) agreed that interns received adequate clinical supervision. Qualitative analysis revealed that good processes were in place to ensure adequate supervision, but that service demands, particularly related to access block and overcrowding, had detrimental effects on both supervision and feedback.</p> <p>Conclusions</p> <p>Consultants appear to provide the majority of supervision of junior medical staff in Australian EDs. Supervision and feedback are generally felt to be adequate, but are threatened by service demands, particularly related to access block and ED overcrowding.</p
    corecore