
United States Military Academy United States Military Academy 

USMA Digital Commons USMA Digital Commons 

ACI Journal Articles Army Cyber Institute 

3-2023 

Deep VULMAN: A Deep Reinforcement Learning-enabled Cyber Deep VULMAN: A Deep Reinforcement Learning-enabled Cyber 

Vulnerability Management Framework Vulnerability Management Framework 

Soumyadeep Hore 

Ankit Shah 

Nathaniel D. Bastian 
Army Cyber Institute, U.S. Military Academy, nathaniel.bastian@westpoint.edu 

Follow this and additional works at: https://digitalcommons.usmalibrary.org/aci_ja 

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, Information 

Security Commons, and the Operations Research, Systems Engineering and Industrial Engineering 

Commons 

Recommended Citation Recommended Citation 
Hore, Soumyadeep; Shah, Ankit; and Bastian, Nathaniel D., "Deep VULMAN: A Deep Reinforcement 
Learning-enabled Cyber Vulnerability Management Framework" (2023). ACI Journal Articles. 220. 
https://digitalcommons.usmalibrary.org/aci_ja/220 

This Article is brought to you for free and open access by the Army Cyber Institute at USMA Digital Commons. It 
has been accepted for inclusion in ACI Journal Articles by an authorized administrator of USMA Digital Commons. 
For more information, please contact dcadmin@usmalibrary.org. 

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/aci_ja
https://digitalcommons.usmalibrary.org/aci
https://digitalcommons.usmalibrary.org/aci_ja?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/aci_ja/220?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@usmalibrary.org


Expert Systems With Applications 221 (2023) 119734

Available online 28 February 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Deep VULMAN: A deep reinforcement learning-enabled cyber vulnerability
management framework
Soumyadeep Hore a, Ankit Shah a,∗, Nathaniel D. Bastian b

a University of South Florida, Department of Industrial & Management Systems Engineering, Tampa, FL, 33620, United States of Amercia
b United States Military Academy, Army Cyber Institute, West Point, NY, 10996, United States of America

A R T I C L E I N F O

Keywords:
Cyber vulnerability management
Vulnerability prioritization
Security resources optimization
Deep reinforcement learning
Integer programming
DRL defender framework

A B S T R A C T

Cyber vulnerability management is a critical function of a cybersecurity operations center (CSOC) that helps
protect organizations against cyber-attacks on their computer and network systems. Adversaries hold an
asymmetric advantage over the CSOC, as the number of deficiencies in these systems is increasing at a
significantly higher rate compared to the expansion rate of the security teams to mitigate them. The current
approaches in cyber vulnerability management are deterministic and one-time decision-making methods,
which do not consider future uncertainties when prioritizing and selecting vulnerabilities for mitigation.
These approaches are also constrained by the sub-optimal distribution of resources, providing no flexibility to
adjust their response to fluctuations in vulnerability arrivals. We propose a novel framework, Deep VULMAN,
consisting of a deep reinforcement learning agent and an integer programming method to fill this gap in
cyber vulnerability management process. Our sequential decision-making framework, first, determines the
near-optimal amount of resources to be allocated for mitigation under uncertainty for a given system state,
and then determines the optimal set of prioritized vulnerability instances for mitigation. Results show that our
framework outperforms the current methods in prioritizing the selection of important organization-specific
vulnerabilities, on both simulated and real-world vulnerability data, observed over a one-year period.

1. Introduction

Adversaries are actively looking to exploit unpatched vulnerabilities
in the computer and network systems to cause significant damage
to public and private organizations. Such pervasive cyber-attacks are
often aimed at debilitating the security posture of an organization
and capturing their high value assets. Recently, the United States
White House had issued a memo urging organizations to promptly
identify and remediate vulnerabilities in their systems, among other rec-
ommendations to bolster cybersecurity against the adversaries (White-
House, 2021). Major challenges faced by the organizations to imple-
ment this recommendation result from a significant recent increase in
the number of new vulnerabilities that are reported in the National
Vulnerability Database (NVD) (NIST, 2022), as well as the lack of
security personnel (resources) available to mitigate them. This has
resulted in vulnerabilities persisting in the computer and network
systems of the organizations for a long time, thereby creating a sig-
nificant advantage for the adversaries. Hence, it is critical to develop
resource-constrained approaches for effectively identifying and mitigat-
ing important organization-specific security vulnerabilities to combat
adversarial exploitation and minimizing damage from cyber-attacks.

∗ Correspondence to: University of South Florida, 4202 East Fowler Avenue, Mail-Stop: ENG-030, Tampa, FL 33620-5530, United States of America.
E-mail addresses: soumyadeep@usf.edu (S. Hore), ankitshah@usf.edu (A. Shah), nathaniel.bastian@westpoint.edu (N.D. Bastian).

1.1. Cyber vulnerability management process

Cyber vulnerability management is a continuous process involving
scanning of an organization’s network and mitigating the identified
vulnerabilities. Fig. 1 shows a schematic of the cyber vulnerability
management process. A typical cyber vulnerability management pro-
cess starts with the scanning of the software and hardware components
of an organization’s network with a vulnerability scanner (such as
Tenable, Qualys, or IBM) to find vulnerabilities reported in the NVD.
The generated vulnerability report contains all vulnerability instances
found in the network along with their attributes, which include the
common vulnerability exposure (CVE) code, host name, description,
and the common vulnerability scoring system (CVSS) severity rat-
ing, among others. The security teams at the cybersecurity operations
centers (CSOCs) then assign the available resources to mitigate the
vulnerability instances selected based on certain vulnerability triage
mechanisms. Example of actions taken by security personnel are apply-
ing patches (vendor-supplied or CSOC-designed), upgrading software,
disabling services, and adding IP filters, among others. The unmitigated
vulnerabilities accumulate in the queue for selection in the subsequent

https://doi.org/10.1016/j.eswa.2023.119734
Received 1 November 2022; Received in revised form 15 February 2023; Accepted 20 February 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:soumyadeep@usf.edu
mailto:ankitshah@usf.edu
mailto:nathaniel.bastian@westpoint.edu
https://doi.org/10.1016/j.eswa.2023.119734
https://doi.org/10.1016/j.eswa.2023.119734
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.119734&domain=pdf


Expert Systems With Applications 221 (2023) 119734

2

S. Hore et al.

Fig. 1. Cyber vulnerability management process.

iteration(s). We provide a detailed literature review on the various
triage mechanisms used for vulnerability selection and mitigation in
Section 2.

1.2. Challenges in current approaches

The current approaches for vulnerability management, including
methods employed at the CSOCs and proposed in recently published
literature, use rule-based mechanisms or static (one-time) optimization
models (Farris, Shah, Cybenko, Ganesan, & Jajodia, 2018; Hore, Moom-
taheen, Shah, & Ou, 2022; Shah, Farris, Ganesan, & Jajodia, 2019)
to prioritize the selection of vulnerabilities for mitigation, given the
number of resources available at a particular time step (e.g., a week).
The shortcomings in the current approaches are as follows.

• The vulnerability selection processes do not include a compre-
hensive list of factors associated with the host machine and
the respective organizational environment to determine the true
priority of a vulnerability instance found in a scan report. For
instance, a CSOC security team performs many functions, which
include intrusion detection system (IDS) alert management along
with vulnerability management. An IDS alert log can identify host
machines with possible intrusion attempts and integrating this
information, along with other factors such as the CVSS severity
rating, into prioritizing vulnerability instances found on such
machines can help better protect against potential attacks.

• Recently proposed optimization models (Farris et al., 2018; Hore
et al., 2022; Shah et al., 2019) have focused on selecting vulnera-
bility instances from dense reports that maximize the cumulative
vulnerability utility or exposure score. Such approaches make
a biased decision of selecting a vulnerability instance based on
the time it takes to patch or mitigate it. Hence, these methods
will select a larger number of less important vulnerabilities if
their mitigation time is considerably low when compared to an
important vulnerability with a significantly higher mitigation
time.

• The current approaches assume a deterministic environment for
solving this problem (Farris et al., 2018; Hore et al., 2022; Shah
et al., 2019). The number and type of vulnerability arrivals are
assumed to be known and distributed uniformly across the time
horizon. They do not consider the stochasticity in vulnerability
arrivals and consider a pre-determined (often an equal) number
of resources distributed across all the individual decision-making
time steps to prioritize the selection of vulnerabilities for mitiga-
tion. For instance, if an organization has 𝑅 number of resources
available for 𝑇 number of sequential time steps, then the current
methods assign an equal distribution of the resources (i.e., 𝑅

𝑇 ) at
each time step (e.g., a week) of a given period (e.g., a month).
In this example, the CSOC commits to use 𝑅

𝑇 number of resources
even during a time step where the potential threat associated with
vulnerabilities present in the system is low, which can occur due
to the arrival of very few or less severe vulnerabilities. Such an
inflexible approach will prevent the security team from reacting
appropriately in an adverse event (medium or high vulnerability
arrival) that occurs in a subsequent time step due to the wastage
of resources in the previous step. Hence, a deterministic, one-time
decision-making model will produce a sub-optimal mitigation
strategy in real-world stochastic conditions.

1.3. Research objective and approach

The cyber vulnerability management process aims to strengthen an
organization’s security posture in an infinite time horizon, requiring
sequential decision-making. This resource-constrained process must be
made robust to the stochasticity in vulnerability arrivals. Hence, it is
imperative that (i) the number of resources to be allocated at each time
step (iteration) is optimized and (ii) the important vulnerabilities are
identified and prioritized for mitigation from the dense report (queue),
given the optimized allocation of resources. Our research objective is
to fill the current gap in the cyber vulnerability management process
by proposing a novel artificial intelligence (AI) enabled framework
powered by a deep reinforcement learning (DRL) agent and an integer
programming method for effective vulnerability triage and mitigation.
First, our proposed framework dynamically allocates resources for a
given system state by considering future uncertainties in a resource-
constrained environment. Next, a mathematical model for vulnerability
prioritization and selection is formulated and solved to select a set
of important vulnerabilities prioritized for mitigation based on the
resource allocation decision. We provide a detailed description of our
proposed method for cyber vulnerability management in Section 3.

1.4. Contributions of the research study

The main contributions of the study are as follows. First, we de-
veloped a novel dynamic cyber vulnerability triage framework, Deep
VULMAN, designed to combat the uncertainty in the vulnerability
management process and select the most important vulnerability in-
stances for mitigation from a dense list of vulnerabilities identified in
the network. Unlike other methods in recent literature, we pose the
problem as a sequential decision-making problem and segregate the
vulnerability management process in our proposed framework into two
parts. (i) We determine the near-optimal amount of resources required
for mitigation, given the observed system state. (ii) We determine
the optimal set of prioritized vulnerability instances for mitigation.
Second, we developed a DRL agent based on a policy gradient approach
that learns to make near-optimal resource allocation decisions under
stochastic vulnerability arrivals. The agent continuously interacts with
a simulated CSOC operations environment built using real-world vul-
nerability data. The agent gets feedback from a novel reward signal
engineered from (i) the mitigation of important vulnerabilities and (ii)
the number of resources utilized at each time step. Third, we developed
a combinatorial mathematical model using an integer programming
method for vulnerability prioritization and selection for mitigation with
the allocated resource decision from the DRL agent. Unlike the current
methods in the literature, we present a unique formulation that gener-
ates an optimal set of prioritized vulnerability instances for mitigation,
with the maximum average cumulative attribute score among all the
vulnerability instances. Fourth, to the best of our knowledge, this study
is the first to propose a framework that integrates IDS alert information
to vulnerability data to improve the vulnerability management process
at a CSOC. This approach is a major step towards building a robust
defense system against adversaries. Our experiment results demon-
strated that with this added information from the alert logs, through
prioritized vulnerability instances, we were able to find machines that
had very old or expired versions of software, making them easier
targets for adversaries. Finally, we provided valuable insights obtained
using our proposed framework by comparing our results with recent
vulnerability prioritization and selection methods from the literature.



Expert Systems With Applications 221 (2023) 119734

3

S. Hore et al.

Our experimental results using real-world vulnerability data show that
our approach is more efficient and effective in selecting important
organization-specific vulnerabilities than the other methods.

The paper is organized as follows. Section 2 presents the related
literature. Section 3 presents the proposed Deep VULMAN framework,
which consists of the CSOC operations simulation environment and the
AI-enabled decision-support component that recommends near-optimal
decisions for vulnerability management. The DRL resource allocation
and the vulnerability prioritization and selection model formulations
and algorithms are presented in this section. Section 4 presents the
numerical experiments performed using both simulated and real-world
vulnerability scan data. Section 5 presents the experiment results and
comparisons with recent methods from literature. Lastly, in Section 6,
we present conclusions and meta-principles obtained from this study,
followed by potential future research directions.

2. Related literature

We have organized the literature review by dividing the related
literature into two topics: (i) vulnerability scoring systems and triage
methods, and (ii) DRL approaches in solving sequential decision-
making problems.

2.1. Vulnerability scoring systems and triage methods

To gauge the severity or threat of a vulnerability, it is impor-
tant to have a mechanism for scoring the attributes or impacts of
the vulnerability. In 2006, Mell, Scarfone, and Romanosky (2006)
proposed the common vulnerability scoring system (CVSS) to provide
a base score to quantify the vulnerability severity. Later, in 2007,
the same authors proposed CVSS version 2 to cover the shortcomings
of CVSS version 1 by reducing inconsistencies, providing additional
granularity, and increasing the capability to reflect a wide variety of
vulnerabilities (Mell et al., 2007). The CVSS framework is managed
by the Forum of Incident Response and Security Teams (FIRST), and
the latest version of CVSS in use today is version 3.1 (FIRST.org,
2020). The CVSS metric consists of eight base metrics, three temporal
metrics, and four environmental metrics (FIRST.org, 2020). However,
the computation of environmental metrics is complicated and not well
proven (Gallon, 2010). The NVD omits the temporal and environmental
metrics and considers only the base metrics when calculating the CVSS
severity of reported vulnerabilities (Fruhwirth & Mannisto, 2009).

CVSS base metric group is a common choice of application among
most organizations to gauge the severity of the vulnerabilities present
in their network. However, anecdotal and literary evidences suggest
that the CVSS base score alone is not sufficient to measure the impact
of a vulnerability in a particular organization due to the absence of
organizational context (Farris et al., 2018; Fruhwirth & Mannisto, 2009;
Holm, Ekstedt, & Andersson, 2012; Holm, Sommestad, Almroth, & Pers-
son, 2011). There have been many contributions from researchers to
bridge this gap. Some of the important contributions are by McQueen,
McQueen, Boyer, and Chaffin (2009), in which the authors proposed
two metrics Median Active Vulnerabilities (MAV) and Vulnerability-
Free Days (VFD) based on the report time of the vulnerability and time
when the patch is issued by the vendor; Allodi and Massacci (2014)
considered black-market exploit data to boost the statistical significance
of the indication pertaining to the true severity of a vulnerability; Farris
et al. (2018) proposed two performance metrics: Total Vulnerability
Exposure (TVE) that scores the density of unmitigated vulnerabilities
per month and Time-to-Vulnerability Remediation (TVR) based on the
maximum amount of time (in months) an organization is willing to
tolerate the presence of a certain vulnerability in their system; and Hore
et al. (2022) presented a novel Vulnerability Priority Scoring System
(VPSS) that takes into account the context of the vulnerability along
with the CVSS score by considering relevant host machine information

(positional significance of the host machine, level of importance of the
host machine, and protection level of the host machine).

The vulnerability management environment at a CSOC is highly
resource constrained. The amount of resources needed to mitigate all
the vulnerabilities present in an organization is not adequate. Hence,
developing a good scoring system only solves a part of the prob-
lem. To use the available resources in the best possible manner, it is
imperative to develop triaging solutions to mitigate the most severe
vulnerabilities first. Some of the research studies that addresses this
part of the problem are as follows. Shah et al. (2019) formulated the
triage problem as an integer program and presented a comparison
between individual attribute (severity, persistence, age) and multiple
attribute value optimization; Farris et al. (2018) presented a mixed-
integer programming formulation and developed a goal programming
based solution approach, in which the objective was to minimize the
sum of weighted deviations from a target personnel-hours, target TVR
and target TVE; Hore et al. (2022) proposed a two-step model, in which
the first step consisted of an integer programming model with the
objective of minimizing the VPSS score and the second step consisted of
a mixed-integer programming approach for assigning the selected vul-
nerabilities from the first step to the most suitable analysts; Cavusoglu,
Cavusoglu, and Zhang (2008) developed a game theoretic approach to
patch management that takes into account the cost–benefit analysis
of patching; Dondo (2008) proposed a fuzzy risk analysis approach
to rank the vulnerabilities available for selection; and Sharma, Sibal,
and Sabharwal (2021) proposed a text analytics based vulnerability
prioritization with the help of word embedding and convolutional
neural networks.

The aforementioned research studies contribute effective ways of
solving the vulnerability triage problem in a deterministic environment
as a one-time decision-making problem, in which the number and
type of vulnerability arrivals are considered to be known and are
assumed to be uniformly distributed across the time horizon. However,
in reality, the vulnerability arrival process is highly stochastic. Hence,
it is unlikely for a deterministic model to perform optimally in a
stochastic environment. There exist a gap in the literature that demands
the development of a model that is robust to the uncertainty of both
number and types of vulnerability arrivals. Also, accumulating relevant
attributes for a reliable vulnerability scoring system is a daunting task.
There is a critical need to add information from other functions of the
CSOC such as IDS alert management to improve the security posture of
an organization.

2.2. Deep Reinforcement Learning (DRL) approaches

DRL is one of the most promising solution methods for obtaining
near-optimal policies under stochastic conditions. DRL was first applied
by Mnih et al. in 2013 to successfully learn a control policy from
sensory inputs with high dimensions (Mnih, Kavukcuoglu et al., 2013).
Today, DRL has been used in various application domains such as
autonomous vehicles, stock trading, robotics, cyber-security, and mar-
keting, among others (Bogyrbayeva, Jang, Shah, Jang, & Kwon, 2021;
Kirtas, Tsampazis, Passalis, & Tefas, 2020; Liang, 2020). The model-free
DRL methods in published literature can be broadly classified in two
parts: value-based and policy-based. In value-based DRL approaches,
we try to estimate the Q-value or a state–action pair by employing
a deep neural network estimator. Policy based methods aim to di-
rectly learn the stochastic or deterministic policies, where the action
is generated by sampling from the policy. Mnih et al. proposed a novel
method, Deep Q Learning (DQN), which is a value-based method with
superior performance demonstrated on Atari 2600 games. Some of the
notable advancements made in the area of value-based DRL methods
include the works by: Van hasselt et al. who proposed DRL with
double q-learning (DDQN) to overcome the overestimation suffered
by DQN (Van Hasselt, Guez, & Silver, 2016; Wang et al., 2016), who
proposed the dueling network architectures for DRL with two identical



Expert Systems With Applications 221 (2023) 119734

4

S. Hore et al.

but separate neural network estimators for estimating the state value
function and action advantage function, among others.

One of the popular advancements in policy-based methods include
the work by Mnih et al. who presented asynchronous methods for DRL
with parallel actor learners, asynchronous advantage actor critic (A3C),
and outperformed others on Atari 2600 games (Mnih, Badia et al.,
2016). Vanilla policy gradient algorithms generally suffer from high
variance, poor sample efficiency, and slow convergence. Schulman,
Levine et al. (2015) presented Trust Region Policy Optimization (TRPO)
that limits the policy update with a certain KL-divergence constraint
and also guarantees monotonic improvement. In 2017 Schulman, Wol-
ski, Dhariwal, Radford, and Klimov (2017) proposed Proximal policy
Optimization (PPO) that has all the advantages of TRPO, and in addi-
tion it is simpler, faster, and more sample efficient. PPO uses a clipped
surrogate objective function that prevents large changes in the policy.
The clipped surrogate objective is also a light weight replacement of
the KL-divergence constraint in TRPO. Due to its simplicity, sample ef-
ficiency, and robustness to hyper parameter tuning, PPO is a promising
approach to solving dynamic sequential decision-making problems.

An efficient and effective cyber vulnerability management process
can help an organization bolster the security of its computer network
systems. It is critical to continuously improve this process, consisting
of vulnerability triage and allocation to an appropriate number of re-
sources for mitigation. Most of the work in the literature focuses on for-
mulating one-time (static) strategies for selecting vulnerabilities from
dense vulnerability reports by considering a fixed amount of resource
availability and without taking future vulnerability arrivals into ac-
count. To our knowledge, no research has addressed this gap by posing
the cyber vulnerability management problem as a sequential decision-
making problem under the stochasticity of vulnerability arrivals and
resource fluctuations. This paper focuses on strengthening the security
posture of the CSOCs by generating robust vulnerability management
policies for real-world stochastic environments. Next, we present the
proposed framework for dynamic vulnerability management.

3. Deep reinforcement learning-enabled cyber vulnerability man-
agement (deep VULMAN) framework

We propose the development of a sequential decision-making frame-
work that provides a dynamic resource allocation strategy along with
an optimal selection of vulnerabilities that are prioritized for mitiga-
tion. Fig. 2 shows a schematic representation of the Deep VULMAN
framework. The framework consists of two key components: (i) a CSOC
operations environment, where relevant computer and network data
are collected and aggregated using various software applications, and
(ii) a decision-support component, in which (a) a DRL agent is trained
using a policy gradient algorithm to make near-optimal resource al-
location decisions under uncertainty and (b) an integer programming
model is developed to generate the set of vulnerabilities, which are
prioritized for mitigation with the amount of resources allocated by
the DRL agent. We first describe the CSOC operations environment,
in which we propose a simulator to overcome the data insufficiency
issues for training the DRL agent, followed by the decision-support
component.

3.1. CSOC operations environment

A major challenge for cybersecurity researchers is obtaining an
extensive data set for a research study. Very few studies in published
literature, such as Farris, McNamara, Goldstein, and Cybenko (2016),
Shah et al. (2019) and Xu, Schweitzer, Bateman, and Xu (2018), have
investigated the process of cyber-incident or vulnerability emergence
using historical data. However, these have been small and private data
sets. Data sets are unavailable for research due to a lack of complete
information in a cyber environment or for confidentiality reasons.
Authors in Haldar and Mishra (2017) and Kuypers and Paté-Cornell

(2016) studied cyber-incident data for large cyber breaches and found
Poisson distribution to be the best fit for describing the arrivals in
these data sets. The DRL agent must interact with an environment that
closely resembles the real CSOC operations to learn the best policies
that can be implemented in real-world conditions. Hence, to overcome
the challenges of having insufficient data to properly train a DRL
agent and learning in a slow-moving real-world environment (Dulac-
Arnold, Mankowitz, & Hester, 2019), we built a simulator from the
large amount of real data that we collected by working with a CSOC.
We developed a discrete event simulation (DES) algorithm with fixed-
increment time progression to model the vulnerability management
process at a CSOC. The DRL agent (explained in the next section)
continuously interacts with this simulated environment to learn the
goodness of its actions. It is to be noted that the agent is unaware of the
inner dynamics of the simulator. Algorithm 1 presents the simulation al-
gorithm. The inputs to the algorithm are the various vulnerability scan
reports and other relevant network-related information obtained from
applications such as Nessus, Lansweeper, and IDS. The stochasticity in
the vulnerability arrival process is realized in the simulator by follow-
ing a randomly generated vulnerability arrival pattern at the beginning
of each planning horizon (episode). The arrivals are generated using
a Poisson distribution with varying mean obtained from the historical
data. Vulnerability instances with varying characteristics are randomly
sampled from the historical data sets at each time step in an episode,
along with the collection of the related host machine data.

In a real-world implementation, training a DRL agent requires a
significant amount of data, generated through repeated interactions
between the agent and its environment. This would require a CSOC
to build a simulator mimicking their real-world operations to enable
offline training of the agent. There are inherent assumptions made
regarding the number and types of vulnerabilities that will be encoun-
tered, which could lead to biased learning if the scenarios presented
in the simulator do not accurately reflect the CSOC’s actual state. To
overcome this challenge, it is crucial to incorporate historical data
from the CSOC to obtain a true representation of vulnerability arrival
patterns. This information should be used in the simulator to expose
the DRL agent to the real-world conditions observed in the respective
CSOC.

The vulnerability instances, the respective host machine informa-
tion, and the number of resources available are then passed on to the
decision-support component (see Fig. 2) as the state of the system at the
given time step. The action pertaining to this system state is then taken
as input by the simulated environment from the decision-support com-
ponent. The simulation algorithm executes this action, containing the
vulnerability set selected for mitigation. A scalar reward is computed in
the simulator, which consists of two terms, one related to the mitigation
of important vulnerabilities and another to the number of resources
utilized. The action selection and reward function details are presented
in the next section. The cumulative time taken to mitigate the selected
vulnerabilities is then deducted from the total time available at the
beginning of the time step (e.g., the start of the week). The environment
is then stepped forward to the next time step (the start of next week)
with the remaining resources. A new set of vulnerability instances is
then generated, and this process continues for the entire episode (e.g., a
month). The simulator adds the new set of vulnerabilities (arrivals) to
the unmitigated vulnerabilities from the previous time step. Next, we
describe the decision-support component of the proposed framework.

3.2. Decision support for vulnerability management

The objective of this research is to identify and prioritize impor-
tant vulnerabilities for mitigation under stochasticity in vulnerability
arrivals in a resource-constrained system. It is to be noted that the
decision-making problem can be broken down into obtaining two de-
cisions: (i) determining the near-optimal resources to be allocated
and (ii) determining the set of vulnerability instances for mitigation



Expert Systems With Applications 221 (2023) 119734

5

S. Hore et al.

Fig. 2. Deep VULMAN framework for cyber vulnerability management.

Algorithm 1: CSOC operations simulation algorithm
Input: Nessus vulnerability report, Lansweeper report, IDS data, weights for

reward terms, 𝑤1 and 𝑤2, total resources available for the episode, 𝑅.
Output: System state at time 𝑡 + 1, 𝑠𝑡+1, reward at time 𝑡, 𝑟𝑡.
Aggregate the input information to create a data set with vulnerability instance

and host machine information.
/* Initiate the CSOC environment simulation */
repeat

Create a set of vulnerability arrival patterns, 𝑃
for number of episodes,𝑒 <= 𝐸: do

Randomly choose an arrival pattern from the set, 𝑃
Generate vulnerability instance arrivals for the first time step
for number of time step,𝑡 <= 𝑇 do

Obtain action, 𝑎𝑡 from Algorithm 2
Implement action, 𝑎𝑡
Calculate reward, 𝑟1𝑡 for mitigating vulnerabilities
Calculate reward, 𝑟2𝑡 for resource utilization
Calculate the cumulative reward, 𝑟𝑡 = 𝑤1 ∗ 𝑟1𝑡 +𝑤2 ∗ 𝑟2𝑡
Update the resources available for 𝑡 + 1
if not terminal state (𝑡 < 𝑇 ) then

Increment 𝑡 by 1
Simulate vulnerability arrivals for time 𝑡 + 1
Add new arrivals to unmitigated vulnerabilities

end
else

𝑒 = 𝑒 + 1
end

end
end

until Stopping criteria /* Maximum number of episodes 𝐸 is reached;
return System state at time t+1, 𝑠𝑡+1, Reward at time 𝑡, 𝑟𝑡

given these resources, which reduces the vulnerability exposure of the
organization in the long run. The former decision of allocating the
appropriate amount of resources is affected by the stochasticity in the

environment and the CSOC can strengthen their security with a dy-
namic resource allocation strategy. Once the decision on the amount of
resources allocated is made, the mathematical model can be invoked to
optimally select the set of important vulnerabilities for mitigation. The
decision-support component consists of (i) a DRL agent that generates
the resource allocation strategy and (ii) a mathematical model, which
is formulated and solved using integer programming, that optimally
selects important vulnerability instances from the dense report for pri-
oritized mitigation. In this section, first, we describe the DRL problem
formulation for optimizing the resource allocation strategy, followed
by the DRL algorithm and the formulation of the mathematical model,
which outputs the vulnerability selection decision.

3.2.1. DRL formulation
The problem of making sequential decisions for resource alloca-

tion to mitigate important vulnerabilities and thereby reducing the
vulnerability exposure and strengthening the security posture of an
organization in the long run can be formulated as a Markov deci-
sion process (MDP). The key elements of the MDP formulation are as
follows:

• State, 𝑠𝑡, represents the information that is visible to the agent
at time 𝑡, which consists of the vulnerability instances, their
respective attributes, and the total amount of resources available.
The state space is 𝑁 ∗ (𝐼 +1) dimensional, where 𝐼 is the number
of attributes and 𝑁 is set to a value greater than or equal to
the maximum number of vulnerabilities historically found in the
vulnerability scan reports. The system state is shown in a dotted
box in Fig. 2, which provides the DRL agent with the information
needed to make the resource allocation decision for vulnerability



Expert Systems With Applications 221 (2023) 119734

6

S. Hore et al.

selection. We use the concept of zero padding to fill empty rows
(i.e, last 𝑁 - 𝐽 rows, where 𝐽 is the number of vulnerabilities
found in that scan) with zeros (Lin, Wang, Olkin, & Held, 2020).

• Action, 𝑎𝑡, represents the control. The action is the amount of
resources to be allocated at time 𝑡, given a state, 𝑠𝑡. The action
space is continuous for this problem to maintain tractability of
obtaining decisions.

• State transition function determines the probability with which
a system will transition from state 𝑠𝑡 to 𝑠𝑡+1 under action 𝑎𝑡. The
state transition probabilities for this problem are unknown and
the possible number of state transitions are very high (state space
explosion). Hence, it is infeasible to determine the state transition
probabilities. The simulator will provide the state transition to
𝑠𝑡+1 under action 𝑎𝑡.

• Reward, 𝑟𝑡, is a measure of the goodness of an action, 𝑎𝑡, taken
in a given state, 𝑠𝑡, at time 𝑡. The agent’s goal is to maximize the
long-term cumulative reward. Hence, setting up the reward signal
is critical to train the agent to achieve the research objective. In
this research, we engineer a novel reward function, which consists
of two weighted terms. The agent receives this reward, as shown
in the dotted box in Fig. 2, from: (i) the mitigation of important
vulnerabilities (𝑟1) and (ii) the number of resources utilized (𝑟2).
The reward function, at time 𝑡, is given by Eq. (1) where 𝑤1 and
𝑤2 are weights associated with the reward terms and whose sum
must be equal to 1.

𝑟𝑡 = 𝑤1 ∗ 𝑟1𝑡 +𝑤2 ∗ 𝑟2𝑡 (1)

The importance of a vulnerability instance is determined by tak-
ing into consideration the following attributes: asset criticality,
level of protection, organizational relevance of the host machine,
the CVSS severity of the vulnerability instance, and if the host
machine has been identified in any IDS alerts. These attributes are
obtained using various applications from the organization’s com-
puter and network systems. Categorical attributes are transformed
into numerical values based on certain rules from literature. We
use the same scheme, as in Farris et al. (2018), Hore et al. (2022)
and Shah, Ganesan, Jajodia, and Cam (2018), to identify various
categories for each attribute and assign normalized numerical
values. From our conversations with the CSOC and subject matter
experts, we found that all these factors are considered equally
important. There is a positive reward for selecting vulnerabilities,
which is calculated by taking the average of all the attribute
values of the selected vulnerabilities. If there are 𝐽 number of
selected vulnerabilities and 𝑣𝑖𝑗 represents the value of attribute 𝑖
of the vulnerability instance 𝑗, then the positive reward can be
calculated as:

𝑟1𝑡 = {

∑𝐽
𝑗=1

∑𝐼
𝑖=1 𝑣𝑖𝑗

𝐼 ∗ 𝐽
∶ 𝑉𝑡 ⊆ 𝑈𝑡, 0 ≤ 𝑟1𝑡 ≤ 1}, (2)

𝑈𝑡 ∈ R𝑁∗(𝐼+1),

𝑉𝑡 ∈ R𝐽∗(𝐼+1),

𝐽 ≤ 𝑁,

where 𝑈𝑡 is the set of all vulnerabilities present in the system
at time t and 𝑉𝑡 is the selected subset of vulnerability instances
from 𝑈𝑡. Since the CSOC operations environment is resource
constrained, there exists a trade-off between the number of vul-
nerabilities selected for mitigation and the number of resources
that remain available for vulnerability selection in the next time
step. Hence, we assign a small cost to the utilization of the
resources in this formulation. For the 𝐽 number of vulnerability
instances selected for mitigation with 𝑆𝑗 representing the time
required to mitigate vulnerability 𝑗 and 𝐶 representing the cost

per unit resource utilized, then the resource utilization penalty is
calculated as:

𝑟2𝑡 = {−𝐶
𝐽
∑

𝑗=1
𝑆𝑗 ∶ 𝐶 = 1

𝑅𝑡𝑜𝑡𝑎𝑙
, 0 ≤ 𝑟2𝑡 ≤ 1, 𝑆𝑗 ∈ R+}, (3)

where 𝑅𝑡𝑜𝑡𝑎𝑙 is the total number of resources available at the
beginning of an episode. The 𝑆𝑗 values are calculated using the
approach proposed in Farris et al. (2018). It is important to note
that the reward signal depends on both the allocation of the
appropriate number of resources and the mitigation of important
vulnerabilities. An inherent trade-off exists among the two reward
terms, which produces this novel reward signal to guide the DRL
agent in its decision-making.

The large state space and continuous action space makes this prob-
lem infeasible to solve using conventional reinforcement learning ap-
proaches. To overcome the issue of not being able to calculate and
store the action–value (or Q value) for all possible state–action pairs
due to state space explosion, we propose a deep neural network-based
learning model with a policy gradient algorithm for efficiently solving
this problem (Silver et al., 2014). The deep neural networks serve as
an approximation for the complex, nonlinear decision-making process
in the real-world, which map the inputs to outputs. The model takes
into account the list of vulnerabilities and their attributes to estimate
the resources to allocate. Next, we describe the DRL algorithm.

3.2.2. DRL algorithm
Vanilla policy gradient algorithms have disadvantages such as poor

data efficiency, lack of robustness, and are often subjected to large
changes in policies resulting in unstable learning. Hence, we propose
the proximal policy optimization (PPO) approach (Schulman et al.,
2017) for solving this problem, which is an on-policy algorithm that
overcomes the aforementioned challenges. PPO ensures a smoother
learning of the policies with the objective clipping feature. Addition-
ally, PPO is easy to implement and tune, and provides better sample
efficiency. Algorithm 2 shows the PPO approach proposed for solving
the research problem. Our aim is to train a stochastic policy in an on-
policy manner in this algorithm. We sample actions from a multivariate
normal distribution with mean 𝜇 and covariance matrix 𝛴.

In on-policy learning, the exploration of new policies is achieved by
sampling actions from the latest update of the stochastic policy. The
amount of randomness in policy selection decreases over the course
of training, leading to locally optimum policies due to insufficient
exploration. However, it is essential that a DRL agent is able to explore
sufficiently to avoid getting stuck in a local minima. Hence, to address
this issue: (i) a standard deviation is added to the action computed by
the policy network, and (ii) an entropy regularization term is added
to the objective function (Ahmed, Le Roux, Norouzi, & Schuurmans,
2019). The value of added standard deviation is larger at the begin-
ning of the training process and it decreases over the course of the
training phase with a decay rate. For a discrete random variable 𝑥 with
probability mass function 𝑃 (𝑥), the entropy, 𝐻(𝑥) can be calculated as:

𝐻(𝑋) = −
∑

𝑥∈𝑋
𝑃 (𝑥)𝑙𝑜𝑔𝑃 (𝑥) (4)

In this paper, we use generalized advantage estimation (GAE) to
compute the advantages used in the value function. Eq. (5) shows
the GAE estimator, GAE (𝛾, 𝜆), as the exponential-weighted average
of k-steps (Schulman, Moritz et al., 2015), where 𝛾 is the discount
factor and 𝜆 is the exponential weight discount. Both these values
range between 0 and 1. 𝛿𝑉𝑡 is the temporal difference (TD) residual
of an approximated value function V with discount factor 𝛾 (Sutton &
Barto, 2018). If 𝑟𝑡 is the reward at time 𝑡 then 𝛿𝑉𝑡 can be expressed as,
𝛿𝑉𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) + 𝑉 (𝑠𝑡).

�̃�𝑡
𝐺𝐴𝐸(𝛾,𝜆) =

∞
∑

𝑡=0
(𝛾𝜆)𝑙𝛿𝑉𝑡+1 (5)



Expert Systems With Applications 221 (2023) 119734

7

S. Hore et al.

The salient feature of the PPO approach is the clipped surrogate
objective function, which is a modification over the objective function
proposed in conservative policy iteration (Kakade & Langford, 2002).
Vanilla policy gradient algorithms often result in destructively large
policy updates, which cause the learning to be unstable; the clipped
surrogate objective function ensures a small policy update at each
epoch with the selection of a small value for 𝜖, which defines the
maximum permissible change in the policy. Eq. (6) shows the clipped
surrogate objective, where 𝜖 is a hyperparameter that determines the
threshold of clipping.

𝐿𝐶𝐿𝐼𝑃 (𝜃) = Ẽ[𝑚𝑖𝑛
𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ∣ 𝑠𝑡)

�̃�𝑡,

𝑐𝑙𝑖𝑝(
𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ∣ 𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖)�̃�𝑡] (6)

We use a neural network architecture that shares the weight pa-
rameters between the policy and the value function estimators. Hence,
we take into consideration the value function error term along with the
clipped objective. Additionally, an entropy regularization term is added
to ensure sufficient exploration (Mnih, Badia et al., 2016). Eq. (7) shows
the consolidated objective function, in which 𝑐1 and 𝑐2 are coefficients
for the value function error term and the entropy, respectively.

𝐿𝐶𝐿𝐼𝑃+𝑉 𝐹+𝐻
𝑡 (𝜃) = Ẽ[𝐿𝐶𝐿𝐼𝑃

𝑡 (𝜃) − 𝑐1𝐿
𝑉 𝐹
𝑡 (𝜃) + 𝑐2𝐻[𝜋𝜃](𝑠𝑡)] (7)

Next, we update the policy network parameters, 𝜃𝑘 using stochastic
gradient ascent and the value function parameters, 𝜙𝑘 using stochastic
gradient descent, as shown in Algorithm 2. The learning phase contin-
ues until a maximum number of episodes, 𝐸, is reached. The number
𝐸 can greatly vary depending on the state and action space dimensions
and complexity of the environment. The approximate function repre-
sented by the policy network with the final learned weights estimates
the required resources (output), given the vulnerability instances and
their attributes (input) in the system. The number of resources, 𝑎𝑡
allocated for mitigation at any given time 𝑡, obtained from this near-
optimal policy is then passed on to the vulnerability prioritization and
selection mathematical model, which is described next.

3.2.3. Vulnerability prioritization and selection model
The prioritization and selection of vulnerability instances is

achieved by solving a mathematical model, whose solution provides the
set of prioritized vulnerabilities selected for mitigation by the available
resources (decision made by the DRL agent). The vulnerability selection
problem is posed as a combinatorial optimization problem and solved
using integer programming. The static vulnerability prioritization and
selection models in Farris et al. (2018), Hore et al. (2022) and Shah
et al. (2019) directly maximize the cumulative utility or exposure scores
of their respective factors to obtain the sets of prioritized vulnerability
instances. Such sets of vulnerabilities may not contain all important
vulnerabilities, as their formulations do not maximize the average value
of the selected vulnerabilities. For instance, consider five vulnerabilities
obtained from a scan report with respective utilities of 7, 2, 2, 3, and 2,
and the respective expected mitigation time of 7.5, 2, 2, 2, and 1.5 h.
If, at time 𝑡, there exists only 7.5 h remaining, then these models will
pick vulnerability instances 2, 3, 4, and 5 as this selection set will have
a cumulative value of 2 + 2 + 3 + 2 = 9 units, while the total time
required will be 7.5 h. However, it would have been better to pick
vulnerability instance 1 as the utility or exposure associated with it is
higher than others. This is a major shortcoming of these algorithms,
which will miss out on picking important vulnerabilities in such cases.
In our proposed formulation, we counter this issue by maximizing the
average of the cumulative value of all the attributes across all selected
vulnerability instances subject to the total time available for mitigation
in any given time-period. In addition, we take into consideration
the largest set of attributes associated with any vulnerability and its
respective host machine when compared to other methods in published
literature. The notations used in the formulation of the mathematical

Algorithm 2: Deep VULMAN learning algorithm
Input: Initiate initial policy parameters, 𝜃0, value function parameters, 𝜙0,

starting standard deviation value, 𝑠𝑑0, 𝑡 = 0, 𝑒 = 0, decay rate, 𝛿, and
replay buffer, 𝐵.

Output: Near-optimal vulnerability management policy (near-optimal policy
network parameters, 𝜃).

repeat
for number of episodes,𝑒 <= 𝐸: do

Obtain an initial state, 𝑠0 from Alg. 1
for number of time steps,𝑡 <= 𝑇 do

Use policy network with weights 𝜃𝑡 to obtain action mean, 𝑎𝑡 using
policy 𝜋𝜃𝑡

Use standard deviation, 𝑠𝑑𝑒 to create a covariance matrix, 𝛴𝑒
Sample action, 𝑎𝑡 from a multivariate normal distribution with

mean,𝑎𝑡 and covariance, 𝛴𝑒
/* Initiate a solution search using an integer programming solver */
repeat

for a set of 𝑧𝑗 = 1, check for feasibility: do
∑𝐽

𝑗=1 𝑆𝑗 ∗ 𝑧𝑗 ≤ 𝑎𝑡 /* Resource availability constraint */
end
if Feasible then

Calculate 𝑦 =
∑𝐽
𝑗=1

∑𝐼
𝑖=1 𝑣𝑖𝑗 ∗𝑧𝑗

∑𝐽
𝑗=1 𝑧𝑗

end
until Stopping criteria /* Optimal value for 𝑦 is found */;
Obtain 𝑠𝑡+1, 𝑟𝑡 from Alg. 1 based on decision, 𝑧𝑗∀𝑗
Add the trajectory, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) to 𝐵
Compute rewards-to-go, 𝐺𝑡
Decay standard deviation with a decay rate, 𝛿
Compute advantage estimates, �̃�𝑡 using GAE based on the current

value function 𝑉𝑡 with network weights 𝜙𝑡
Compute the PPO-Clip objective function:
𝐿𝐶𝐿𝐼𝑃+𝑉 𝐹+𝐸𝑛𝑡𝑟𝑜𝑝𝑦
𝑡 (𝜃) = ̃E≈[𝐿𝐶𝐿𝐼𝑃

𝑡 (𝜃) − 𝑐1𝐿𝑉 𝐹
𝑡 (𝜃) + 𝑐2 ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦]

Update the policy by maximizing the PPO-Clip objective via
stochastic gradient ascent.

𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃
1

𝑙∗𝑇
∑

𝜏∈𝑅
∑𝑇

𝑡=0 𝑚𝑖𝑛(
𝜋𝜃 (𝑎𝑡 ∣𝑠𝑡 )
𝜋𝜃𝑘 (𝑎𝑡 ∣𝑠𝑡 )

)𝐴𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡), 𝑔(𝜖, 𝐴
𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡))

The parameters for the value function network by minimizing the
mse loss by stochastic gradient descent, 𝜙𝜃𝑘 is updated using:

𝜙𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜙
1

𝑙∗𝑇
∑

𝜏∈𝑅
∑𝑇

𝑡=0(𝑉𝜙(𝑠𝑡) − 𝐺𝑡)2

end
end

until Stopping criteria /* Maximum number of episodes, 𝐸, is reached;
return Near-optimal vulnerability management policy (near-optimal policy network
parameters, 𝜃)

Algorithm 3: Deep VULMAN implementation algorithm
Input: Near-optimal vulnerability management policy from Alg. 2, state 𝑠𝑡 from

real-world data set.
Output: Set of vulnerabilities selected for mitigation.
Obtain action 𝑎𝑡 for state 𝑠𝑡 according to the learned policy from Alg. 2
/* Initiate a solution search using an integer programming solver */
repeat

for a set of 𝑧𝑗 = 1, check for feasibility: do
∑𝐽

𝑗=1 𝑆𝑗 ∗ 𝑧𝑗 ≤ 𝑎𝑡 /* Resource availability constraint */
end
if Feasible then

Calculate 𝑦 =
∑𝐽
𝑗=1

∑𝐼
𝑖=1 𝑣𝑖𝑗 ∗𝑧𝑗

∑𝐽
𝑗=1 𝑧𝑗

end
until Stopping criteria /* Optimal value for 𝑦 is found */;
return 𝑧𝑗 ∀𝑗.

model are defined in Table 1. Below, we present the input parameters,
decision variables, objective function, constraints, and the output of the
vulnerability selection model.

Input parameters:

• The attribute scores for all vulnerability instances, 𝑣𝑖𝑗 ∀𝑖, 𝑗.
• Expected time taken to mitigate a vulnerability instance 𝑗, 𝑆𝑗 .
• Total number of vulnerability instances in the scan report, 𝐽 .
• Total resources available at time 𝑡 (action from the DRL agent),
𝑎𝑡.



Expert Systems With Applications 221 (2023) 119734

8

S. Hore et al.

Table 1
Definitions of notations.

Notation Definition

Indices:

𝑗 Vulnerability instance index
𝑖 Vulnerability attribute index
Inputs:
𝐽 Total number of vulnerability instances
𝐼 Total number of vulnerability attributes
𝑆𝑗 Expected mitigation time for vulnerability 𝑗
𝑎𝑡 Total resources (in hours) available at time 𝑡
𝑣𝑖𝑗 Value of attribute 𝑖 for vulnerability 𝑗

Variables:

𝑧𝑗
(Binary)

Selection of vulnerability instance 𝑗

Decision variables:

• 𝑧𝑗 = 1 if vulnerability instance 𝑗 is selected, and 0 otherwise.

Objective function: The objective of the model is to select the set
of vulnerability instances prioritized for mitigation that maximizes
the average of the cumulative value of the attribute scores across all
selected vulnerability instances. The objective function is given by:

𝑦 = 𝑀𝑎𝑥

∑𝐽
𝑗=1

∑𝐼
𝑖=1 𝑣𝑖𝑗 ∗ 𝑧𝑗

∑𝐽
𝑗=1 𝑧𝑗

(8)

Constraint: The constraint for the model is the availability of resource
time, 𝑎𝑡, at any given time 𝑡, which is obtained from the DRL agent. The
constraint for the total time taken to mitigate the selected vulnerability
instances not being higher than the total resource time available at time
𝑡 is expressed as:
𝐽
∑

𝑗=1
𝑆𝑗 ∗ 𝑧𝑗 ≤ 𝑎𝑡 (9)

Output: The output of the vulnerability prioritization and selection
model is the set of prioritized vulnerability instances selected for mit-
igation. This decision is then communicated to the CSOC operations
environment, as shown in Fig. 2.

At the end of the learning phase (as shown in Algorithm 2), the
nonlinear approximation function with the final learned weights of the
policy network is obtained. This function near-optimally maps the list
of vulnerability instances and their attributes to the required resources
to allocate for mitigation, representing the near-optimal vulnerability
management policy. Algorithm 3 shows the learned version of the
Deep VULMAN method. Given a new state, 𝑠𝑡, obtained at time 𝑡
from previously unseen data (simulated or real-world data set), the
algorithm, using the learned approximation function, outputs the set
of vulnerability instances selected for mitigation, i.e., 𝑧𝑗 ∀𝑗. Next, we
present the numerical experiments and analysis of results.

4. Numerical experiments

In this section, we first describe the data collection process and the
simulation environment setup for the CSOC vulnerability management
operations, followed by the experimental details of the training and
testing phases of the DRL algorithm. We worked closely with a CSOC
to collect the vulnerability data and other relevant computer network
information. Our conversations with the security analysts helped us
determine various parameter values that were used in setting up the
environment, and training and testing the proposed Deep VULMAN
framework.

4.1. Data collection and simulation environment for CSOC operations

We developed a simulator from the real-world data that we col-
lected by working with a CSOC. We used two applications: Tenable’s
Nessus vulnerability scanner and Lansweeper to collect the vulnerabil-
ity data. The data set contained 98,842 unique vulnerability instances,
which were found historically in the network. We also collected rel-
evant host machine data and alert data generated by the IDS. The
Lansweeper report contained information about the host machines in
the network, which included the software versions of the operating
system and SQL server, among others. In this research study, we also
integrated information from the IDS alert logs to obtain the intru-
sion status of the host machine. If a host machine with the reported
vulnerability was identified in the IDS alert log for the respective time-
period (say, between time 𝑡 − 1 and 𝑡), then this information was
recorded. The intrusion status attribute of the vulnerability instance
was set accordingly. All the machine-specific information for the host
machines on which the vulnerabilities were found was added to the
consolidated data set. The aggregated data set contained information
about the host machine and vulnerability instances such as the host IP,
CVE code, description, CVSS value indicating the vulnerability severity
rating, importance of the machine in the network, versions of software
running on the host machine, and estimated personnel-hours required
to mitigate the vulnerability instance (Farris et al., 2018), among other
known information.

We applied vulnerability data preprocessing techniques to quantify
attributes. We used the same categories and the quantification process
as in Farris et al. (2018) and Hore et al. (2022). For completeness, we
describe the process as follows. We first surveyed and interviewed the
stakeholders (security team). We obtained responses to specific ques-
tions pertaining to each attribute. Our questions were categorized into
schemes shown in Table 2. Three main categories of responses were
recorded: high, medium, and low. Depending on the organization’s
requirements, this list can be expanded to include more categories,
such as critical. Our discussions identified important sub-domains with
critical assets and important devices, including database servers, web
servers, and important stakeholder machines. We then obtained their
respective category ratings from the stakeholders. For example, the
machines from these important sub-domains were assigned a critical
rating. Similarly, the database, web, and important stakeholder ma-
chines were assigned critical, high, and medium levels of relevancy,
respectively. The level of protection was measured by evaluating the
version of software running on the host machine, including the oper-
ating system or specialized systems like SQL. The level of protection
decreases as the software version becomes outdated, as vendors may
no longer provide support for these versions, leaving them vulnera-
ble to new cyber threats. If the host machine’s software version was
unsupported by the vendor, it was considered to have low protection
and, therefore, was assigned a high relevance. If it was close to being
unsupported (for e.g., Windows Server 2012), then it was considered
to be at a medium level of relevancy.

Next, we assigned each category a numerical value. The attribute
with the highest priority was assigned a numerical value of 1, while
the lowest was assigned 0.1. The categories in between the highest and
lowest priorities were assigned numerical values using a linear scale.
For example, suppose the asset criticality of a particular machine is
deemed critical (highest priority). In that case, it will be assigned a
value of 1, and if it is low (lowest priority), it will be assigned 0.1.
The CVSS severity score for a vulnerability was obtained from the NVD
(using a Nessus scanner) and normalized between 0 and 1. If a machine
was detected as having a possible intrusion in the IDS alert logs, the
intrusion status attribute was assigned a value of 1, otherwise 0. Table 2
shows the attributes and their respective values.

We then used this consolidated data set to build a simulator to
closely resemble the vulnerability arrival and mitigation process at a
CSOC. We created an agent-based DES that mimics the arrival and



Expert Systems With Applications 221 (2023) 119734

9

S. Hore et al.

Table 2
Attributes and quantification schemes.

Attribute Scheme Category Value

Asset Criticality
Based on the machine’s
location among different
sub-domains.

Critical 1
High 0.5
Med 0.25
Low 0.1

Protection Level
Based on the version
of operating system
and SQL.

High 1
Med 0.5
Low 0.1

Relevance
Based on whether the
machine is a web or a
database server.

High 1
Med 0.5
Low 0.1

CVSS Severity Numerical value from
Nessus scan report.

Cont. 0.1–1

Intrusion Status Machine identified in
IDS alert log.

Yes 1
No 0

mitigation process of vulnerability instances in a CSOC. With the help of
a simulation model, we generated diverse patterns of new vulnerability
arrivals to expose the DRL agent to stochasticity it may find in a
real-world environment. From our discussions with the CSOC security
personnel and historical evidence, along with the information pub-
lished in literature (Farris et al., 2018), we modeled the vulnerability
instance arrival process using a Poisson distribution and varied the av-
erage number of arrivals from 40 to 600 per week (representing a large
network). We segregated our arrivals into three different categories,
namely, high, medium, and low. Different patterns of arrivals, based
on the aforementioned average numbers per week, were simulated
for training the DRL agent. Some examples of arrival patterns for
four consecutive weeks in a month include, [high, high, low, low],
[medium, medium, medium, low], and [low, high, medium, high],
among others. Vulnerability instances were randomly sampled from
the data set based on the arrival pattern (i.e., using Poisson distri-
bution with the respective average number of arrivals) at each time
step (i.e., 𝑡 = 1 week in Algorithm 1) emulating the arrival process
in the CSOC. All the information about the vulnerability instances
is then passed to the decision-support component (explained in the
next sub-section) to obtain the vulnerability instances set selected for
mitigation. Upon receiving this information, the simulation algorithm
steps forward and the selected vulnerability instances are mitigated
utilizing the time assigned to each of them in the consolidated data set.
The total mitigation time of the selected vulnerability instances is then
deducted from the available resource time from the previous time step
and the remaining resource time is carried forward to the next time
step. Each week represents as a decision time step in the simulator.
Next, we describe the training and testing phases of the proposed Deep
VULMAN framework.

4.2. Training phase

The objective of the decision-support component in Fig. 2 is to take
near-optimal actions, which involve allocating the security personnel
resources and selecting the important vulnerability instances for mit-
igation, in the wake of stochastic vulnerability arrival process. The
DRL agent interacts with the environment to learn the near-optimal
policy of allocating the appropriate number of resources that would
be required for mitigating the important vulnerabilities. As discussed
in the previous section, based on the characteristics of the problem, we
developed an advanced policy gradient algorithm using the proximal
policy optimization (PPO) approach to efficiently solve this problem.

We conducted our experiments with some of the hyper-
parameter values from published literature (Carvalho Melo & Omena
Albuquerque Máximo, 2019; Schulman et al., 2017) and tuned the
remaining by trial-and-error, which involved running experiments with

Table 3
Hyper-parameter values used in Algorithm 2.

Hyper-parameter Value

Number of training episodes (E) 500,000
Number of time steps (T) 4
Number of hidden layers 2
Hidden layer sizes [64, 64]
Activation for hidden layers Tanh
Buffer size (B) 512
Batch size 256
Gamma (𝛾) 0.99
K-epochs 30
Eps-Clip (𝜖) 0.2
Learning rate - Actor 0.0002
Learning rate - Critic 0.001
Value function co-efficient (𝑐1) 0.5
Entropy co-efficient (𝑐2) 0.01
Maximum action standard deviation (start) (𝑠𝑑0) 0.65
Action standard deviation decay rate 0.025
Action standard deviation decay freq. 5000 episodes
Min. action standard deviation (end) 0.01

different sets of values. The PPO approach is known to be more for-
giving to sub-optimal initialization of hyper-parameter values. Table 3
shows the hyper-parameters used to train the DRL agent. Algorithm
2 takes an entropy factor in the surrogate loss function, like in the
original PPO paper by Schulman et al. (2017). This helps in ensuring
sufficient exploration. We conducted the experiments on a machine
with 11th Gen Intel Core i7-12700H processor with NVIDIA GeForce
RTX 2080 graphics card and 16 GB RAM.

We used a multi-layer perceptron (MLP) model with two hidden
layers, each containing 68 perceptrons and Tanh activation functions
for the actor and critic networks. We tried various architectures with
larger number of hidden layers and perceptrons but did not find any
significant improvements in the performance of the DRL agent. We
selected the two hidden layer architecture due to its computationally
efficiency when compared with the others. The DRL agent took actions
using the policy network. There was some standard deviation added to
these actions, which started with a value of 0.65 and decayed to 0.01
with a rate of 0.025. The decay rate and decay frequency are problem-
specific, and hence we had to tune it with a trial-and-error approach.
To avoid getting stuck in a local optimum and encourage exploration,
we used 0.01 as the entropy co-efficient value, which was multiplied
by the entropy and subtracted from the loss function. The value of
the entropy factor was adopted from the literature (Schulman et al.,
2017). At each time step, the output of the DRL agent is provided as
an input to the vulnerability prioritization and selection mathematical
model (Algorithm 2) and the vulnerability instances are selected for
mitigation, which are then passed on to the CSOC operations envi-
ronment. Based on these actions, a scalar reward value is calculated,
which is derived from the two terms in the reward function (as shown
in Eq. (1)). This reward signal helps the DRL agent to adjust its actions
based on the uncertainties experienced in the learning environment.
We considered equal values of the weights used for the two reward
terms in the reward function (in Eq. (1)) and assigned a value of
10−5 to the cost per unit resource utilized (𝐶). We also performed
sensitivity analysis by considering a different set of weights for these
terms during the training phase. In particular, we assigned a larger
weight (0.8) to the first reward term associated with mitigating critical
vulnerabilities and a smaller weight (0.2) to the second term associated
with conserving resources. It is to be noted that assigning a smaller
weight to the first term will contradict the objective of the CSOC
vulnerability management team and hence, it was not included in the
analysis. Next, we explain the different test arrangements we used to
evaluate the performance of the Deep VULMAN approach.



Expert Systems With Applications 221 (2023) 119734

10

S. Hore et al.

Fig. 3. Comparison of the total number of vulnerabilities selected in Scenario 1 from (a) high value assets, (b) machines with low level of protection, (c) organization-specific
relevant machines, and (d) machines with intrusion alert signals.

4.3. Testing phase and evaluation criteria

We evaluated the DRL-enabled Deep VULMAN framework with two
types of data: (i) simulated data from the CSOC operations simulator
(Algorithm 1) and (ii) real-world vulnerability data from the collabo-
rating CSOC. We set the standard deviation to zero during the testing
phase, to avoid any further exploration by the DRL agent when taking
actions using the policy network.

First, we evaluated the performance of the trained DRL agent on
previously unseen data obtained from the simulation environment (Al-
gorithm 1). To test the DRL agent on diverse set of conditions, we
generated episodes that were very different from one another in terms
of the number and types of vulnerability arrivals. We broadly divided
them into four different scenarios. Table 4 shows the vulnerability
arrival patterns in the different scenarios, where 𝑋 indicates either a
low or medium arrival pattern. Scenario 1 indicates a large number
of vulnerability arrivals in the first half of the month. Scenario 2
indicates a large number of vulnerability arrivals during the middle
of the month, while scenario 3 indicates such high arrivals towards
the last half of the month. Scenario 4 represents a uniform arrival
of vulnerabilities throughout the month. Finally, we evaluated the

Table 4
Different scenarios of vulnerability arrival patterns.

Scenario number Arrival pattern/week

Scenario 1 [high, high, X, X]
Scenario 2 [X, high, high, X]
Scenario 3 [X, X, high, high]
Scenario 4 uniform

performance of the Deep VULMAN framework on previously unseen
real-world data collected from the collaborating CSOC. We ran our
experiments for a period of one year (i.e., 52 weeks).

We compared our method with two recent vulnerability selection
methods from published literature, namely, VPSS (Hore et al., 2022)
and VULCON (Farris et al., 2018). We did not consider the CVSS-value
based selection method in our comparison due to its limitation in taking
context of an organization into consideration. None of the methods
had any prior knowledge of the vulnerability arrival patterns and their
performances were measured at each decision-making time step. To
compare the three approaches, we recorded the vulnerabilities that
were selected for mitigation from (a) high value assets, (b) machines



Expert Systems With Applications 221 (2023) 119734

11

S. Hore et al.

Fig. 4. Comparison of the total number of vulnerabilities selected in Scenario 2 from (a) high value assets, (b) machines with low level of protection, (c) organization-specific
relevant machines, and (d) machines with intrusion alert signals.

with lower level of protection, (c) organizationally relevant machines
(i.e., web and database servers), and (d) machines with intrusion de-
tection alert signals. Next, we describe and analyze the results obtained
from the aforementioned experiments.

5. Analysis of results

In this section, we first present the evaluation results obtained using
the simulated environment data, followed by the results obtained using
the real-world CSOC data. We conclude this section with a sensitivity
analysis on the weights used in the reward function to train the DRL
agent.

Figs. 3–6 show a comparison among the various methods of vul-
nerability management for each of the scenarios described in Table 4.
Each of these figures show the total number of vulnerabilities that
were selected for mitigation from (a) high value assets, (b) machines
with lower level of protection, (c) organizationally relevant machines
(i.e., web and database servers), (d) and machines with intrusion
detection alert signals. It can be seen that the Deep VULMAN approach
outperforms all the other methods in selecting the maximum cumula-
tive number of vulnerability instances in the 52-week period in all the

aforementioned factors across all scenario types (vulnerability arrival
patterns). It is to be noted that in the Deep VULMAN approach, the DRL
agent first determines the number of resources that would be required
based on the observation (system state) at any given time (i.e., week
𝑡) and then the vulnerability prioritization and selection model utilizes
the decision of the DRL agent to select the vulnerability instances for
mitigation. The results show that the trained DRL agent is able to make
good decisions on the number of resources to be allocated at each time
step for selecting the important vulnerabilities, and the selection model
is able to prioritize the selection of vulnerability instances that are
critical for mitigation. The results also demonstrate that static optimiza-
tion methods such as the VPSS and the VULCON used for prioritizing
vulnerabilities suffer from the inflexibility in allocation of resources
as they do not consider future uncertainties into consideration when
making decisions.

Next, we evaluate the performance of our approach on the real-
world vulnerability data set, which was collected from a collaborating
CSOC for one year. Fig. 7 shows the results obtained using this data for
the respective year. We can observe that the Deep VULMAN method
outperforms the other two methods on this data set. The DRL agent
takes a ‘lean’ approach when there is a lower number of critical



Expert Systems With Applications 221 (2023) 119734

12

S. Hore et al.

Fig. 5. Comparison of the total number of vulnerabilities selected in Scenario 3 from (a) high value assets, (b) machines with low level of protection, (c) organization-specific
relevant machines, and (d) machines with intrusion alert signals.

vulnerabilities in the system, and by conserving resources for the
anticipated ‘big’ event, it does a better (more) resource allocation at
that respective time step. After that, the selection model is able to
identify and prioritize these important vulnerabilities. Similar to the
results obtained using the simulated environment, with our approach,
more vulnerabilities are prioritized for mitigation from the important
machines, i.e., web and database servers. These results matched the
requirements we had gathered from the security personnel at the CSOC.
Another interesting result obtained using our method is the priori-
tization of vulnerabilities found on machines identified in potential
attacks using the IDS alert data. Further investigation of these machines
also revealed that the majority of these machines were identified to
have a lower level of protection (i.e., old software versions with no or
limited support from the vendor), indicating that they were an easier
target of adversaries and hence, vulnerabilities found in them must
be prioritized. The results point towards achieving a high degree of
robustness by employing the proposed DRL-enabled framework in the
vulnerability triage process.

Fig. 8 shows a particular episode (month) in which the vulnerability
arrival pattern fluctuates between high, medium, and low across the
four-time steps (weeks). The orange bar shows the total expected

mitigation time required (in minutes) to mitigate all the vulnerabilities
identified in the network, and the blue bar shows the number of
resources allocated by the DRL agent. To show the effectiveness of
our methodology in making these resource allocation decisions, we
plot another bar (shown in red in Fig. 8) displaying the total expected
mitigation time of critical vulnerabilities. We identify critical vulnerabil-
ities as follows. We first calculate the average attribute value of each
vulnerability instance and then identify the ones that are at or above a
threshold as follows:
∑𝐼

𝑖=1 𝑣𝑖,𝑗
𝐼

≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∀𝑗 (10)

Note that the attribute values are normalized and hence the maximum
average attribute value that can be obtained in Eq. (10) is 1. We set
the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 at 0.75 and considered all the vulnerabilities with the
average attribute value between 0.75 and 1 as critical. The dotted line
in the figure represents the even distribution of resources, a commonly
employed practice at the CSOCs and utilized by the other two methods
(VPSS and VULCON). It can be observed that the DRL agent allocates
a lower-than-average number of resources in the first week to match
the arrival pattern of vulnerabilities, followed by a lower-than-average



Expert Systems With Applications 221 (2023) 119734

13

S. Hore et al.

Fig. 6. Comparison of the total number of vulnerabilities selected in Scenario 4 from (a) high value assets, (b) machines with low level of protection, (c) organization-specific
relevant machines, and (d) machines with intrusion alert signals.

number of resources in the second week, thereby saving more resources
in anticipation of a larger number of new vulnerability arrivals in the
last two weeks of the month. In this case, the DRL agent demonstrates
that it can react appropriately in the first two time steps by allocat-
ing fewer resources and has learned non-trivial decisions of utilizing
conserved resources to counter an anticipated future event (of high
arrivals). Accordingly, the prioritization and selection model is able to
prioritize the selection of vulnerabilities across all the factors. Fig. 9
(a–d) shows the scatter plots of vulnerability severity scores and the
expected mitigation time for each of the four consecutive weeks in this
episode. This set of plots clearly shows that our approach, with a unique
reward function for the DRL agent and an effective objective function
for the selection model, helps improve the organization’s security pos-
ture by successfully mitigating all critical vulnerability instances over
one month. We also observed superior Deep VULMAN performance in
episodes with different vulnerability arrival patterns, indicating that
the DRL agent has learned to make better decisions in the wake of
stochastic vulnerability arrivals.

5.1. Sensitivity analysis on the reward term weights

We perform a sensitivity analysis of the reward function and present
the results in this section. The reward, as shown in Eq. (1), is derived
from two factors: (i) the number of important vulnerabilities that are
mitigated and (ii) the number of resources that are utilized. Based
on our conversations with CSOCs, we found that a CSOC’s resources
often comprise regular in-house security personnel and a surge team
(i.e., security personnel on standby/on-call). The objective of the CSOC
is to mitigate all threats to the organization by identifying and re-
mediating important vulnerabilities. Hence, we consider two cases in
performing the sensitivity analysis of the reward function used in our
methodology. In case 1, we consider that a CSOC values the mitiga-
tion of important vulnerabilities and the number of resources utilized
equally. An example is when a CSOC only has access to regular in-
house security personnel for vulnerability management. In case 2, we
consider that a CSOC values the mitigation of important vulnerabilities
more than conserving resources. An example of this case is when a
CSOC has a large pool of resources, including regular in-house and



Expert Systems With Applications 221 (2023) 119734

14

S. Hore et al.

Fig. 7. Comparison of the total number of vulnerabilities selected from real-world data (one year) from (a) high value assets, (b) machines with low level of protection, (c)
organization-specific relevant machines, and (d) machines with intrusion alert signals.

Fig. 8. Comparison between expected mitigation time of critical vulnerabilities and
mitigation time allocated by the DRL agent.

surge team members. We do not consider the case in which CSOC
values conserving resources more than mitigating the threats, as that
will be a contradiction to its objective. We model the above two
cases for the sensitivity analysis study as follows. We assign equal
weights to both the reward terms in case 1 and a higher weight to
the important vulnerability mitigation term (first term) compared to
the resource conservation term (second term) in case 2. Fig. 10 (a–d)
shows the results obtained for the four different time steps (weeks) in
an episode (month). The 𝑥-axis shows the average number of critical
vulnerabilities that arrived for the respective time step, and the 𝑦-axis
shows the resources allocated (in minutes).

The results obtained by conducting the experiments on the simu-
lated data indicate that case 2 yields a policy that tends to allocate
more resources than the policy obtained with case 1, which is intuitive
as the focus in case 2 is more on mitigating a larger number of
vulnerabilities at each time step. However, we found that such an
approach utilizes resources faster. For instance, in experiments where
the vulnerability arrivals followed a pattern such as the one in scenario
2 or 3 (Table 4), the resources were over-utilized in the first couple
of time steps with respect to the critical vulnerabilities and a smaller
number of resources were available for the second half of the month



Expert Systems With Applications 221 (2023) 119734

15

S. Hore et al.

Fig. 9. Comparison among vulnerability severity scores and mitigation time for weeks 1–4 (a–d).

when a larger number of vulnerabilities arrived. As a result, the total
number of critical vulnerabilities that were prioritized for mitigation
throughout an episode was significantly lower than that obtained with
case 1 (presented in our approach). This behavior of the DRL-agent can
be observed in Fig. 10(a) and Fig. 10(d) by comparing the difference in
resources allocated when the average number of critical vulnerabilities
is larger in the first and last weeks of the month. Next, we present the
conclusions from this study and future directions.

6. Conclusions, summary of meta-principles and future directions

The paper presented a novel cyber vulnerability management frame-
work, Deep VULMAN, to identify and prioritize important vulnerabil-
ities for mitigation in the wake of stochastic vulnerability arrivals in
a resource-constrained environment. The problem of effective vulnera-
bility management is posed as a sequential decision-making problem
and solved using a DRL-based policy gradient method along with a
mathematical optimization model. We first trained a state-of-the-art
DRL agent using a simulated CSOC operations environment, which was
built using real-world CSOC data, to learn the near-optimal policy of
allocating resources for selecting vulnerabilities for mitigation. Next,
a mathematical model for vulnerability prioritization and selection

was formulated and solved using integer programming to obtain the
prioritized set of important vulnerabilities selected for mitigation. We
conducted our experiments on simulated and real-world vulnerability
data for one year.

Below we present a summary of meta-principles obtained from the
experiments conducted in this research:

1. The Deep VULMAN approach outperforms all other vulnerability
management approaches by selecting the maximum number of
vulnerabilities for mitigation from the four evaluation factors
considered in this study. The factors included: (a) high-value
assets, (b) machines with lower levels of protection, (c) organi-
zationally relevant machines (such as web and database servers),
and (d) machines identified in the IDS alerts.

2. The DRL-enabled method provided an intelligent and flexible
approach by generating a near-optimal resource distribution
strategy to respond to future uncertainty in the number and
types of vulnerability arrivals compared to the inflexible static
optimization methods.

3. The Deep VULMAN framework is able to identify machines that
are easier targets for adversaries by integrating the IDS alert
information.



Expert Systems With Applications 221 (2023) 119734

16

S. Hore et al.

Fig. 10. Comparison of the average number of hours allocated and the average number of critical vulnerability arrivals for case 1 and case 2 in (a) week 1, (a) week 2, (a) week
3, and (a) week 4.

4. The novel reward function and the effective objective function
in the framework are able to guide the AI agent in identifying
and prioritizing the critical vulnerabilities for mitigation month
after month.

Our DRL-enabled cyber vulnerability management framework can
strengthen the security posture of an organization by generating ro-
bust policies in stochastic and resource-constrained real-world environ-
ments. In this study, we determined the (near-)optimal allocation of a
limited number of resources available in a CSOC across different time
steps. An interesting follow-up work or a future research direction can
include the development of data–driven models to determine the opti-
mal number of security personnel needed to achieve the performance
goal of a vulnerability management team. Furthermore, a trade-off
research study can be investigated comparing the impact of budget on
staffing and performance of the vulnerability management team.

CRediT authorship contribution statement

Soumyadeep Hore: Methodology, Investigation, Software, Valida-
tion, Data curation, Writing – original draft. Ankit Shah: Conceptual-
ization, Methodology, Investigation, Software, Data curation, Writing

– original draft, Writing – review & editing, Supervision, Funding
acquisition. Nathaniel D. Bastian: Conceptualization, Methodology,
Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

The authors would like to thank the CSOC team for providing
their vulnerability data to compare the various methods used in this
research. Further, this work was supported in part by the U.S. Military
Academy (USMA) under Cooperative Agreement No. W911NF-22-2-
0045, and the U.S. Army Combat Capabilities Development Command



Expert Systems With Applications 221 (2023) 119734

17

S. Hore et al.

(DEVCOM) C5ISR Center under Support Agreement No. USMA21056.
The views and conclusions expressed in this paper are those of the
authors and do not reflect the official policy or position of the U.S.
Military Academy, U.S. Army, U.S. Department of Defense, or U.S.
Government.

References

Ahmed, Z., Le Roux, N., Norouzi, M., & Schuurmans, D. (2019). Understanding the
impact of entropy on policy optimization. In International conference on machine
learning (pp. 151–160). PMLR.

Allodi, L., & Massacci, F. (2014). Comparing vulnerability severity and exploits using
case-control studies. ACM Transactions on Information and System Security, 17(1),
1–20.

Bogyrbayeva, A., Jang, S., Shah, A., Jang, Y. J., & Kwon, C. (2021). A reinforcement
learning approach for rebalancing electric vehicle sharing systems. IEEE Transactions
on Intelligent Transportation Systems.

Carvalho Melo, L., & Omena Albuquerque Máximo, M. R. (2019). Learning humanoid
robot running skills through proximal policy optimization. In 2019 Latin American
Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019
Workshop on Robotics in Education (pp. 37–42). http://dx.doi.org/10.1109/LARS-
SBR-WRE48964.2019.00015.

Cavusoglu, H., Cavusoglu, H., & Zhang, J. (2008). Security patch management: Share
the burden or share the damage? Management Science, 54(4), 657–670.

Dondo, M. G. (2008). A vulnerability prioritization system using a fuzzy risk anal-
ysis approach. In IFIP international information security conference (pp. 525–540).
Springer.

Dulac-Arnold, G., Mankowitz, D., & Hester, T. (2019). Challenges of real-world
reinforcement learning. arXiv preprint arXiv:1904.12901.

Farris, K. A., McNamara, S. R., Goldstein, A., & Cybenko, G. (2016). A preliminary
analysis of quantifying computer security vulnerability data in ‘‘the wild’’. 9825,
In Sensors, and command, control, communications, and intelligence (C3I) technologies
for homeland security, defense, and law enforcement applications XV (p. 98250T).
International Society for Optics and Photonics.

Farris, K. A., Shah, A., Cybenko, G., Ganesan, R., & Jajodia, S. (2018). Vulcon: A system
for vulnerability prioritization, mitigation, and management. ACM Transactions on
Privacy and Security, 21(4), 1–28.

FIRST. org (2020). Common Vulnerability Scoring System version 3.1: Specification
Document. https://www.first.org/cvss/specification-document [Online; accessed
18-May-2022].

Fruhwirth, C., & Mannisto, T. (2009). Improving CVSS-based vulnerability prioritization
and response with context information. In 2009 3rd International symposium on
empirical software engineering and measurement (pp. 535–544). IEEE.

Gallon, L. (2010). On the impact of environmental metrics on CVSS scores. In 2010
IEEE second international conference on social computing (pp. 987–992). IEEE.

Haldar, K., & Mishra, B. K. (2017). Mathematical model on vulnerability characteriza-
tion and its impact on network epidemics. International Journal of Systems Assurance
Engineering and Management, 8(2), 378–392.

Holm, H., Ekstedt, M., & Andersson, D. (2012). Empirical analysis of system-level
vulnerability metrics through actual attacks. IEEE Transactions on Dependable and
Secure Computing, 9(6), 825–837.

Holm, H., Sommestad, T., Almroth, J., & Persson, M. (2011). A quantitative evaluation
of vulnerability scanning. Information Management & Computer Security.

Hore, S., Moomtaheen, F., Shah, A., & Ou, X. (2022). Towards optimal triage and
mitigation of context-sensitive cyber vulnerabilities. IEEE Transactions on Dependable
and Secure Computing.

Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement
learning. In In Proc. 19th international conference on machine learning. Citeseer.

Kirtas, M., Tsampazis, K., Passalis, N., & Tefas, A. (2020). Deepbots: A webots-based
deep reinforcement learning framework for robotics. In IFIP international conference
on artificial intelligence applications and innovations (pp. 64–75). Springer.

Kuypers, M., & Paté-Cornell, E. (2016). Center for International Security and Coop-
eration, Stanford, CA., https://Cisac.fsi.stanford.edu/sites/default/files/doe_cyber_
security_incidents.pdf.

Liang, H. (2020). A precision advertising strategy based on deep reinforcement learning.
Ingénierie Des Systèmes D’Information, 25(3).

Lin, X., Wang, Y., Olkin, J., & Held, D. (2020). Softgym: Benchmarking deep re-
inforcement learning for deformable object manipulation. arXiv preprint arXiv:
2011.07215.

McQueen, M. A., McQueen, T. A., Boyer, W. F., & Chaffin, M. R. (2009). Empirical es-
timates and observations of 0day vulnerabilities. In 2009 42nd Hawaii international
conference on system sciences (pp. 1–12). IEEE.

Mell, P., Scarfone, K., & Romanosky, S. (2006). Common vulnerability scoring system.
IEEE Security & Privacy, 4(6), 85–89.

Mell, P., Scarfone, K., Romanosky, S., et al. (2007). A complete guide to the common
vulnerability scoring system version 2.0. 1, In Published By FIRST-Forum of incident
response and security teams (p. 23).

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).
Asynchronous methods for deep reinforcement learning. In International conference
on machine learning (pp. 1928–1937). PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et
al. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:
1312.5602.

NIST (2022). National vulnerability database. https://nvd.nist.gov/vuln [Online;
accessed 1-May-2022].

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning (pp. 1889–1897). PMLR.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:
1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Shah, A., Farris, K. A., Ganesan, R., & Jajodia, S. (2019). Vulnerability selection for
remediation: An empirical analysis. The Journal of Defense Modeling and Simulation,
Article 1548512919874129.

Shah, A., Ganesan, R., Jajodia, S., & Cam, H. (2018). A two-step approach to optimal
selection of alerts for investigation in a CSOC. IEEE Transactions on Information
Forensics and Security, 14(7), 1857–1870.

Sharma, R., Sibal, R., & Sabharwal, S. (2021). Software vulnerability prioritization using
vulnerability description. International Journal of Systems Assurance Engineering and
Management, 12(1), 58–64.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014).
Deterministic policy gradient algorithms. In International conference on machine
learning (pp. 387–395). PMLR.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double

q-learning. 30, In Proceedings of the AAAI conference on artificial intelligence. (1).
Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling

network architectures for deep reinforcement learning. In International conference
on machine learning (pp. 1995–2003). PMLR.

WhiteHouse (2021). Executive Order on Improving the Nation’s Cybersecurity (Pres-
idential Actions, May 12, 2021). https://www.whitehouse.gov/briefing-room/
presidential-actions [Online; accessed 1-May-2022].

Xu, M., Schweitzer, K. M., Bateman, R. M., & Xu, S. (2018). Modeling and predicting
cyber hacking breaches. IEEE Transactions on Information Forensics and Security,
13(11), 2856–2871.

http://refhub.elsevier.com/S0957-4174(23)00235-X/sb1
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb1
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb1
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb1
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb1
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb2
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb2
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb2
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb2
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb2
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb3
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb3
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb3
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb3
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb3
http://dx.doi.org/10.1109/LARS-SBR-WRE48964.2019.00015
http://dx.doi.org/10.1109/LARS-SBR-WRE48964.2019.00015
http://dx.doi.org/10.1109/LARS-SBR-WRE48964.2019.00015
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb5
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb5
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb5
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb6
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb6
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb6
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb6
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb6
http://arxiv.org/abs/1904.12901
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb8
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb9
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb9
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb9
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb9
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb9
https://www.first.org/cvss/specification-document
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb11
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb11
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb11
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb11
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb11
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb12
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb12
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb12
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb13
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb13
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb13
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb13
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb13
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb14
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb14
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb14
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb14
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb14
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb15
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb15
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb15
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb16
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb16
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb16
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb16
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb16
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb17
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb17
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb17
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb18
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb18
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb18
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb18
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb18
https://Cisac.fsi.stanford.edu/sites/default/files/doe_cyber_security_incidents.pdf
https://Cisac.fsi.stanford.edu/sites/default/files/doe_cyber_security_incidents.pdf
https://Cisac.fsi.stanford.edu/sites/default/files/doe_cyber_security_incidents.pdf
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb20
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb20
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb20
http://arxiv.org/abs/2011.07215
http://arxiv.org/abs/2011.07215
http://arxiv.org/abs/2011.07215
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb22
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb22
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb22
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb22
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb22
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb23
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb23
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb23
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb24
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb24
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb24
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb24
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb24
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb25
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb25
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb25
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb25
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb25
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://nvd.nist.gov/vuln
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb28
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb28
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb28
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb31
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb31
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb31
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb31
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb31
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb32
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb32
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb32
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb32
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb32
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb33
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb33
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb33
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb33
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb33
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb34
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb34
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb34
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb34
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb34
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb35
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb36
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb36
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb36
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb37
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb37
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb37
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb37
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb37
https://www.whitehouse.gov/briefing-room/presidential-actions
https://www.whitehouse.gov/briefing-room/presidential-actions
https://www.whitehouse.gov/briefing-room/presidential-actions
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb39
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb39
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb39
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb39
http://refhub.elsevier.com/S0957-4174(23)00235-X/sb39

	Deep VULMAN: A Deep Reinforcement Learning-enabled Cyber Vulnerability Management Framework
	Recommended Citation

	Deep VULMAN: A deep reinforcement learning-enabled cyber vulnerability management framework
	Introduction
	Cyber Vulnerability Management Process
	Challenges in Current Approaches
	Research Objective and Approach
	Contributions of the Research Study

	Related Literature
	Vulnerability Scoring Systems and Triage Methods
	Deep Reinforcement Learning (DRL) Approaches

	Deep Reinforcement Learning-enabled Cyber Vulnerability Management (Deep VULMAN) Framework
	CSOC Operations Environment
	Decision Support for Vulnerability Management
	DRL Formulation
	DRL Algorithm
	Vulnerability Prioritization and Selection Model


	Numerical Experiments
	Data Collection and Simulation Environment for CSOC Operations
	Training Phase
	Testing Phase and Evaluation Criteria

	Analysis of Results
	Sensitivity Analysis on the Reward Term Weights

	Conclusions, Summary of Meta-Principles and Future Directions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


