818 research outputs found

    Convergent evolution of levee building behavior among distantly related ant species in a floodplain ant assemblage

    Get PDF
    Flooding impacts ground nesting ant colonies by destroying the infrastructure housing and organizing societal function. Here, we report the convergent evolution in distantly related ant species of a behavioral trait that minimizes costs of flooding: the construction of earthen levees around nest entrances. In a South American floodplain ecosystem, we observed five ant species constructing prominent earthen berms encircling nest entrances shortly after large rainfall events. In four of these species, experimental flooding of nests demonstrated that earthen berms sufficed to prevent floodwaters from entering the below ground portions of the nest. Additional manipulations revealed that levee breaching caused, pronounced, and extended reductions in food collection for two distantly related species. Foraging was preempted by the allocation of workers to repair the internal structure of the nest. These findings represent convergent evolution of a functionally important nest construction behavior in response to comparable selective forces

    Effect of Carbohydrate Supplementation on Investment into Offspring Number, Size, and Condition in a Social Insect

    Get PDF
    Resource availability can determine an organism's investment strategies for growth and reproduction. When nutrients are limited, there are potential tradeoffs between investing into offspring number versus individual offspring size. In social insects, colony investment in offspring size and number may shift in response to colony needs and the availability of food resources. We experimentally manipulated the diet of a polymorphic ant species (Solenopsis invicta) to test how access to the carbohydrate and amino acid components of nectar resources affect colony investment in worker number, body size, size distributions, and individual percent fat mass. We reared field-collected colonies on one of four macronutrient treatment supplements: water, amino acids, carbohydrates, and amino acid and carbohydrates. Having access to carbohydrates nearly doubled colony biomass after 60 days. This increase in biomass resulted from an increase in worker number and mean worker size. Access to carbohydrates also altered worker body size distributions. Finally, we found a negative relationship between worker number and size, suggesting a tradeoff in colony investment strategies. This tradeoff was more pronounced for colonies without access to carbohydrate resources. The monopolization of plant-based resources has been implicated in the ecological success of ants. Our results shed light on a possible mechanism for this success, and also have implications for the success of introduced species. In addition to increases in colony size, our results suggest that having access to plant-based carbohydrates can also result in larger workers that may have better individual fighting ability, and that can withstand greater temperature fluctuations and periods of food deprivation

    A New (Old), Invasive Ant in the Hardwood Forests of Eastern North America and Its Potentially Widespread Impacts

    Get PDF
    Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting

    The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    Get PDF
    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species

    Get PDF
    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal ants normally able to limit its progression

    Genetic Structure, Nestmate Recognition and Behaviour of Two Cryptic Species of the Invasive Big-Headed Ant Pheidole megacephala

    Get PDF
    info:eu-repo/semantics/publishe
    corecore