2,764 research outputs found

    The Effects of Rotation and River Discharge on Net Mixing in Small-Mouth Kelvin Plumes

    Get PDF
    Small-mouth Kelvin number plumes, or plumes with a source width smaller than the deformation radius, are characterized by near-field plume regions of rapid lateral expansion and strong vertical mixing. Net plume mixing, or the dilution of a plume by ocean water between the estuary mouth and the far-field plume, is examined using idealized numerical experiments with the Regional Ocean Modeling System (ROMS). The density anomaly of plume water entering the far field is determined from isohaline analysis of the modeled salinity field. The experiments indicate that when estuarine discharge increases, net plume mixing decreases in a rotating environment but increases in a nonrotating environment. Scaling analysis supports that this opposite trend in behavior is related to rotation turning the plume, limiting the lateral expansion and suppressing shear mixing. The results of this study explain different trends in net plume mixing reported in previous studies and compare favorably to observations of the Fraser River plume

    Low-temperature plasma technology as part of a closed-loop resource management system

    Get PDF
    The results of this testing indicate that the agitated low-temperature plasma reactor system successfully converted carbon, hydrogen, and nitrogen into gaseous products at residence times that were about ten times shorter than those achieved by stationary processing. The inorganic matrix present was virtually unchanged by the processing technique. It was concluded that this processing technique is feasible for use as part of a close-looped processing resource management system

    Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf

    Get PDF
    Observations of the areal extent of seasonal hypoxia over the Texas-Louisiana continental shelf from 1985 to 2010 are correlated with a variety of physical and biogeochemical forcing mechanisms. Significant correlation is found between hypoxic area and both nitrogen load (r(2) = 0.24) and east-west wind speed (r(2) = 0.16). There is also a significant increasing trend in the areal extent of hypoxia in time; a linearly increasing trend over the entire record (r(2) = 0.17), a step increase in area for the years 1994 and beyond (r(2) = 0.21), and a step increase for 1993 and beyond (r(2) = 0.29) were all found to be significantly correlated with area. The year 1988, often included in other studies, was found to be a statistical outlier, in that the statistical regression properties are strongly modified when this year is included. The exclusion of any other year does not have as great an effect as excluding 1988 from the record. The year 1989 is also excluded, as this year had no full shelf survey, for a total of 24 years of data for the record. Multivariable regression models using all possible combinations of the forcing variables considered were calculated. The best performing models included east-west wind, either a linear trend in time or step in time (1994 and beyond), and either nitrogen load or river discharge combined with nitrogen concentration. The range of adjusted correlation coefficients ranged from r(2) = 0.47 to 0.67. The best model (east-west wind, a step increase in time 1994 and beyond, river discharge, and nitrogen concentration) has a standard error of 3008 km(2)

    Cross-frontal entrainment of plankton into a buoyant plume: The frog tongue mechanism

    Get PDF
    A mechanism for the cross-frontal entrainment of plankton by a buoyant plume influenced by wind stress is described and tested using an idealized numerical model. Under the right circumstances, plankton may enter a buoyant plume during an upwelling wind stress, then be transported shoreward during a subsequent downwelling wind stress. In order for the plankton to enter the plume, they must swim upward at a velocity (wp) bounded by Hplume/T \u3c wp \u3c κ/ Hmix where Hplume is the thickness of the buoyant plume, Hmix is the thickness of the upper oceanic mixed layer (Hmix \u3e Hplume), κ is the magnitude of vertical mixing within the mixed layer, and T is the time between upwelling and downwelling events. In words, this equation states that the plankton must swim slow enough so that they are evenly distributed through the mixed layer, so that the buoyant plume may override the plankton patch during upwelling. Once the plume has overridden the patch, in order to enter the plume, the plankton must swim fast enough to be able to enter the plume in the time while it is over them. These two bounds on the swimming rate suggest that, given various physical parameters, there may be a range of swimming speed that will maximize entrainment into a plume. Numerical experiments corroborate the feasibility of the proposed mechanisms and associated scaling

    Observations of the Eastern Maine Coastal Current and Its Offshore Extensions in 1994

    Get PDF
    Cold surface temperatures, reflecting Scotian Shelf origins and local tidal mixing, serve as a tracer of the Eastern Maine Coastal Current and its offshore extensions, which appear episodically as cold plumes erupting from the eastern Maine shelf. A cold water plume emanating from the Eastern Maine Coastal Current in May 1994 was investigated using advanced very high resolution radiometer (AVHRR) imagery, shipboard surveys of physical and biochemical properties, and satellite-tracked drifters. Evidence is presented that suggests that some of the plume waters were entrained within the cyclonic circulation over Jordan Basin, while the major portion participated in an anticyclonic eddy at the distal end of the plume. Calculations of the nitrate transported offshore by the plume show that this feature can episodically export significant quantities of nutrients from the Eastern Maine Coastal Current to offshore regions that are generally nutrient depleted during spring-summer. A series of AVHRR images is used to document the seasonal along-shelf progression of the coastal plume separation point. We speculate on potential causes and consequences of plume separation from the coastal current and suggest that this feature may be an important factor influencing the patterns and overall biological productivity of the eastern Gulf of Maine

    Observations of the Eastern Maine Coastal Current and Its Offshore Extensions in 1994

    Get PDF
    Cold surface temperatures, reflecting Scotian Shelf origins and local tidal mixing, serve as a tracer of the Eastern Maine Coastal Current and its offshore extensions, which appear episodically as cold plumes erupting from the eastern Maine shelf. A cold water plume emanating from the Eastern Maine Coastal Current in May 1994 was investigated using advanced very high resolution radiometer (AVHRR) imagery, shipboard surveys of physical and biochemical properties, and satellite-tracked drifters. Evidence is presented that suggests that some of the plume waters were entrained within the cyclonic circulation over Jordan Basin, while the major portion participated in an anticyclonic eddy at the distal end of the plume. Calculations of the nitrate transported offshore by the plume show that this feature can episodically export significant quantities of nutrients from the Eastern Maine Coastal Current to offshore regions that are generally nutrient depleted during spring-summer. A series of AVHRR images is used to document the seasonal along-shelf progression of the coastal plume separation point. We speculate on potential causes and consequences of plume separation from the coastal current and suggest that this feature may be an important factor influencing the patterns and overall biological productivity of the eastern Gulf of Maine
    • …
    corecore