912 research outputs found

    Voltage dip generator for testing wind turbines connected to electrical networks

    Get PDF
    This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time–voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device

    Electronically highly cubic conditions for Ru in alpha-RuCl3

    Full text link
    We studied the local Ru 4d electronic structure of alpha-RuCl3 by means of polarization dependent x-ray absorption spectroscopy at the Ru-L2,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2g orbitals is -12 ±10\pm10 meV, i.e. negligible as compared to the Ru 4d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff = 1/2 ground state. We have thus shown that as far as the Ru 4d local properties are concerned, alpha-RuCl3 is an ideal candidate for the realization of Kitaev physics

    Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3

    Full text link
    Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we use an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference charge-magnetic X-ray scattering arises, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a significant contribution to the zero-field ferroelectric moment.Comment: This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science VOL 333, (2011), doi:10.1126/science.120808

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4−-82 mG through paramagnetic alignment, and 139−20+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at Kâ€Č' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate ≀\le0.17 M⊙_{\odot} yr−1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of ≄\geq105^{5} yr with a rotational velocity of ≀\leq1228 km s−1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    Tuning the assembling process of modules by the use of proper equipment

    Full text link
    The tuning of the assembly line of concentrated photovoltaic (CPV) modules is an important task to ensure that the efficiency of modules made at the production line is as high as those fabricated in the development phase. A solar simulator for CPV and a module optical analyzer (MOA) are proposed to be used in production to improve the quality of the assembling process (both during the tuning of the production line and once it is completed). Moreover, the usefulness of performing a quality control based on maximum power and optical pointing of modules is discussed by performing a deep analysis of some modules manufactured in the production line and characterized both indoors and outdoors

    Regularization Methods in Chiral Perturbation Theory

    Full text link
    Chiral lagrangians describing the interactions of Goldstone bosons in a theory possessing spontaneous symmetry breaking are effective, non-renormalizable field theories in four dimensions. Yet, in a momentum expansion one is able to extract definite, testable predictions from perturbation theory. These techniques have yielded in recent years a wealth of information on many problems where the physics of Goldstone bosons plays a crucial role, but theoretical issues concerning chiral perturbation theory remain, to this date, poorly treated in the literature. We present here a rather comprehensive analysis of the regularization and renormalization ambiguities appearing in chiral perturbation theory at the one loop level. We discuss first on the relevance of dealing with tadpoles properly. We demonstrate that Ward identities severely constrain the choice of regulators to the point of enforcing unique, unambiguous results in chiral perturbation theory at the one-loop level for any observable which is renormalization-group invariant. We comment on the physical implications of these results and on several possible regulating methods that may be of use for some applications.Comment: 37 pages, 5 figs. not included (available upon request), LaTeX, PREPRINT UB-ECM-PF 93/1

    On the difference of torus geometry between hidden and non-hidden broad line active galactic nuclei

    Get PDF
    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGN) with clumpy torus models. We compiled high spatial resolution (∌0.3\sim 0.3--0.70.7 arcsec) mid-IR NN-band spectroscopy, QQ-band imaging and nuclear near- and mid-IR photometry from the literature. Combining these nuclear near- and mid-IR observations, far-IR photometry and clumpy torus models, enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties; type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGN have smaller torus opening angles and larger covering factors than those of HBLR AGN. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGN.Comment: 13 pages, 5 figures, accepted for publication in Ap

    The Calibration of Monochromatic Far-Infrared Star Formation Rate Indicators

    Get PDF
    (Abridged) Spitzer data at 24, 70, and 160 micron and ground-based H-alpha images are analyzed for a sample of 189 nearby star-forming and starburst galaxies to investigate whether reliable star formation rate (SFR) indicators can be defined using the monochromatic infrared dust emission centered at 70 and 160 micron. We compare recently published recipes for SFR measures using combinations of the 24 micron and observed H-alpha luminosities with those using 24 micron luminosity alone. From these comparisons, we derive a reference SFR indicator for use in our analysis. Linear correlations between SFR and the 70 and 160 micron luminosity are found for L(70)>=1.4x10^{42} erg/s and L(160)>=2x10^{42} erg/s, corresponding to SFR>=0.1-0.3 M_sun/yr. Below those two luminosity limits, the relation between SFR and 70 micron (160 micron) luminosity is non-linear and SFR calibrations become problematic. The dispersion of the data around the mean trend increases for increasing wavelength, becoming about 25% (factor ~2) larger at 70 (160) micron than at 24 micron. The increasing dispersion is likely an effect of the increasing contribution to the infrared emission of dust heated by stellar populations not associated with the current star formation. The non-linear relation between SFR and the 70 and 160 micron emission at faint galaxy luminosities suggests that the increasing transparency of the interstellar medium, decreasing effective dust temperature, and decreasing filling factor of star forming regions across the galaxy become important factors for decreasing luminosity. The SFR calibrations are provided for galaxies with oxygen abundance 12+Log(O/H)>8.1. At lower metallicity the infrared luminosity no longer reliably traces the SFR because galaxies are less dusty and more transparent.Comment: 69 pages, 19 figures, 2 tables; accepted for publication on Ap

    Orbital Ordering Structures in (Nd,Pr)0.5Sr0.5MnO3 Manganite Thin Films on Perovskite (011) Substrates

    Full text link
    Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films' resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.Comment: 19pages, 11 figure

    A novel behavioral fish model of nociception for testing analgesics

    Get PDF
    Pain is a major symptom in many medical conditions, and often interferes significantly with a person's quality of life. Although a priority topic in medical research for many years, there are still few analgesic drugs approved for clinical use. One reason is the lack of appropriate animal models that faithfully represent relevant hallmarks associated with human pain. Here we propose zebrafish (Danio rerio) as a novel short-term behavioral model of nociception, and analyse its sensitivity and robustness. Firstly, we injected two different doses of acetic acid as the noxious stimulus. We studied individual locomotor responses of fish to a threshold level of nociception using two recording systems: a video tracking system and an electric biosensor (the MOBS system). We showed that an injection dose of 10% acetic acid resulted in a change in behavior that could be used to study nociception. Secondly, we validated our behavioral model by investigating the effect of the analgesic morphine. In time-course studies, first we looked at the dose-response relationship of morphine and then tested whether the effect of morphine could be modulated by naloxone, an opioid antagonist. Our results suggest that a change in behavioral responses of zebrafish to acetic acid is a reasonable model to test analgesics. The response scales with stimulus intensity, is attenuated by morphine, and the analgesic effect of morphine is blocked with naloxone. The change in behavior of zebrafish associated with the noxious stimulus can be monitored with an electric biosensor that measures changes in water impedance. © 2011 by the authors; licensee MDPI, Basel, Switzerland
    • 

    corecore