6,569 research outputs found
Directed transport of two interacting particles in a washboard potential
We study the conservative and deterministic dynamics of two nonlinearly
interacting particles evolving in a one-dimensional spatially periodic
washboard potential. A weak tilt of the washboard potential is applied biasing
one direction for particle transport. However, the tilt vanishes asymptotically
in the direction of bias. Moreover, the total energy content is not enough for
both particles to be able to escape simultaneously from an initial potential
well; to achieve transport the coupled particles need to interact
cooperatively. For low coupling strength the two particles remain trapped
inside the starting potential well permanently. For increased coupling strength
there exists a regime in which one of the particles transfers the majority of
its energy to the other one, as a consequence of which the latter escapes from
the potential well and the bond between them breaks. Finally, for suitably
large couplings, coordinated energy exchange between the particles allows them
to achieve escapes -- one particle followed by the other -- from consecutive
potential wells resulting in directed collective motion. The key mechanism of
transport rectification is based on the asymptotically vanishing tilt causing a
symmetry breaking of the non-chaotic fraction of the dynamics in the mixed
phase space. That is, after a chaotic transient, only at one of the boundaries
of the chaotic layer do resonance islands appear. The settling of trajectories
in the ballistic channels associated with transporting islands provides
long-range directed transport dynamics of the escaping dimer
Universal properties of distorted Kerr-Newman black holes
We discuss universal properties of axisymmetric and stationary configurations
consisting of a central black hole and surrounding matter in Einstein-Maxwell
theory. In particular, we find that certain physical equations and inequalities
(involving angular momentum, electric charge and horizon area) are not
restricted to the Kerr-Newman solution but can be generalized to the situation
where the black hole is distorted by an arbitrary axisymmetric and stationary
surrounding matter distribution.Comment: 7 page
Nonlinear response of a linear chain to weak driving
We study the escape of a chain of coupled units over the barrier of a
metastable potential. It is demonstrated that a very weak external driving
field with suitably chosen frequency suffices to accomplish speedy escape. The
latter requires the passage through a transition state the formation of which
is triggered by permanent feeding of energy from a phonon background into humps
of localised energy and elastic interaction of the arising breather solutions.
In fact, cooperativity between the units of the chain entailing coordinated
energy transfer is shown to be crucial for enhancing the rate of escape in an
extremely effective and low-energy cost way where the effect of entropic
localisation and breather coalescence conspire
Cooperative surmounting of bottlenecks
The physics of activated escape of objects out of a metastable state plays a
key role in diverse scientific areas involving chemical kinetics, diffusion and
dislocation motion in solids, nucleation, electrical transport, motion of flux
lines superconductors, charge density waves, and transport processes of
macromolecules, to name but a few. The underlying activated processes present
the multidimensional extension of the Kramers problem of a single Brownian
particle. In comparison to the latter case, however, the dynamics ensuing from
the interactions of many coupled units can lead to intriguing novel phenomena
that are not present when only a single degree of freedom is involved. In this
review we report on a variety of such phenomena that are exhibited by systems
consisting of chains of interacting units in the presence of potential
barriers.
In the first part we consider recent developments in the case of a
deterministic dynamics driving cooperative escape processes of coupled
nonlinear units out of metastable states. The ability of chains of coupled
units to undergo spontaneous conformational transitions can lead to a
self-organised escape. The mechanism at work is that the energies of the units
become re-arranged, while keeping the total energy conserved, in forming
localised energy modes that in turn trigger the cooperative escape. We present
scenarios of significantly enhanced noise-free escape rates if compared to the
noise-assisted case.
The second part deals with the collective directed transport of systems of
interacting particles overcoming energetic barriers in periodic potential
landscapes. Escape processes in both time-homogeneous and time-dependent driven
systems are considered for the emergence of directed motion. It is shown that
ballistic channels immersed in the associated high-dimensional phase space are
the source for the directed long-range transport
Dynamics of entanglement in a dissipative Bose-Hubbard dimer
We study the connection between the semiclassical phase space of the Bose-Hubbard dimer and inherently quantum phenomena in this model, such as entanglement and dissipation-induced coherence. Near the semiclassical self-trapping fixed points, the dynamics of Einstein-Podolski-Rosen (EPR) entanglement and condensate fraction consists of beats among just three eigenstates. Since persistent EPR entangled states arise only in the neighborhood of these fixed points, our analysis explains essentially all of the entanglement dynamics in the system. We derive accurate analytical approximations by expanding about the strong-coupling limit; surprisingly, their realm of validity is nearly the entire parameter space for which the self-trapping fixed points exist. Finally, we show significant enhancement of entanglement can be produced by applying localized dissipation.We thank Luca d'Alessio, Pjotrs Gri. sons, and especially Anatoli Polkovnikov for helpful discussions. This work was supported in part by Boston University, by the US National Science Foundation under Grant No. PHYS-1066293, and by a grant of the Max Planck Society to the MPRG Network Dynamics. H. H. acknowledges support by the German Research Foundation under Grant No. HE 6312/1-1. We are also grateful for the hospitality of the Aspen Center for Physics. (Boston University; PHYS-1066293 - US National Science Foundation; Max Planck Society; HE 6312/1-1 - German Research Foundation)First author draf
Charge transport in poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We investigate the charge transport in synthetic DNA polymers built up from
single types of base pairs. In the context of a polaron-like model, for which
an electronic tight-binding system and bond vibrations of the double helix are
coupled, we present estimates for the electron-vibration coupling strengths
utilizing a quantum-chemical procedure. Subsequent studies concerning the
mobility of polaron solutions, representing the state of a localized charge in
unison with its associated helix deformation, show that the system for
poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers, respectively possess
quantitatively distinct transport properties. While the former supports
unidirectionally moving electron breathers attributed to highly efficient
long-range conductivity the breather mobility in the latter case is
comparatively restrained inhibiting charge transport. Our results are in
agreement with recent experimental results demonstrating that poly(dG)-poly(dC)
DNA molecules acts as a semiconducting nanowire and exhibits better conductance
than poly(dA)-poly(dT) ones.Comment: 11 pages, 5 figure
Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We numerically investigate localization properties of electronic states in a
static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with
realistic parameters obtained by quantum-chemical calculation. The randomness
in the on-site energies caused by the electron-phonon coupling are completely
correlated to the off-diagonal parts. In the single electron model, the effect
of the hydrogen-bond stretchings, the twist angles between the base pairs and
the finite system size effects on the energy dependence of the localization
length and on the Lyapunov exponent are given. The localization length is
reduced by the influence of the fluctuations in the hydrogen bond stretchings.
It is also shown that the helical twist angle affects the localization length
in the poly(dG)-poly(dC) DNA polymer more strongly than in the
poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy
dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure
Charge transport in a nonlinear, three--dimensional DNA model with disorder
We study the transport of charge due to polarons in a model of DNA which
takes in account its 3D structure and the coupling of the electron wave
function with the H--bond distortions and the twist motions of the base pairs.
Perturbations of the ground states lead to moving polarons which travel long
distances. The influence of parametric and structural disorder, due to the
impact of the ambient, is considered, showing that the moving polarons survive
to a certain degree of disorder. Comparison of the linear and tail analysis and
the numerical results makes possible to obtain further information on the
moving polaron properties.Comment: 9 pages, 2 figures. Proceedings of the conference on "Localization
and energy transfer in nonlinear systems", June 17-21, 2002, San Lorenzo de
El Escorial, Madrid, Spain. To be publishe
- …
