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Nonlinear response of a linear chain to weak driving

D. Hennig,1 C. Mulhern,2 A. D. Burbanks,1 and L. Schimansky-Geier3

1Department of Mathematics, University of Portsmouth, Portsmouth PO1 3HF, United Kingdom
2Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
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We study the escape of a chain of coupled units over the barrier of a metastable potential. It is demonstrated
that a very weak external driving field with a suitably chosen frequency suffices to accomplish speedy escape.
The latter requires passage through a transition state, the formation of which is triggered by permanent feeding of
energy from a phonon background into humps of localized energy and elastic interaction of the arising breather
solutions. In fact, cooperativity between the units of the chain entailing coordinated energy transfer is shown to
be crucial for enhancing the rate of escape in an extremely effective and low-energy cost way where the effects
of entropic localization and breather coalescence conspire.
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Recently, there has been increasing interest in the escape of
coupled degrees of freedom or chains of interacting units out
of metastable states [1–7]. Escape is accomplished when the
considered object overcomes a potential barrier separating the
local minimum of the potential landscape from a neighboring
domain of attraction. The activation energy required to
surmount the energetic bottleneck can be provided in different
ways. There is the possibility of stochastic escape occurring
in the presence of a heat bath that is sampled for the optimal
fluctuations triggering an event of escape. Alternatively, in
the noise-free situation the energy can be supplied in a
single shot under microcanonical circumstances. Spontaneous
localization of energy due to modulational instability promotes
the formation of localized humps on the chain. Escape is
connected with the crossing of a saddle point in configuration
space. In particular, a sufficient amount of energy needs to
be concentrated in an associated critical nucleus called the
transition state. Adopting the latter and by passing through
it, the chain is able to surmount the barrier. In addition, the
activation energy may be injected into the system by an exter-
nal time-dependent field [8–11] and waves [12]. The objective
of this paper is to elaborate on an escape scenario of a chain
of interacting units over the barrier of a metastable potential
promoted by a very weak external periodic field. The initially
almost homogeneous chain, possessing virtually no energy,
is brought into the nonlinear regime where it may exhibit
spontaneous energy localization. This process is driven by an
instability of the homogeneous chain with respect to spatial
fluctuations triggered by the external field. Subsequently, a
localized pattern may form on the chain. With this work, we
intend to demonstrate that already a very weak forcing with a
suitably chosen frequency suffices so that the necessary energy
gets localized in order that the chain locally adopts and over-
comes the transition state promoting escape over the barrier.

We study a one-dimensional lattice of nonlinear and driven
coupled oscillators. Throughout the following, we use dimen-
sionless parameters, as obtained after appropriate scaling of
the corresponding physical quantities. The coordinate q of
each individual nonlinear oscillator with a unit mass evolves
in a cubic, single-well on-site potential of the form

U (q) = ω2
0

2
q2 − a

3
q3, a � 0. (1)

This potential possesses a metastable equilibrium at qmin =
0, corresponding to the rest energy Emin = 0 and exhibits a
maximum that is located at qmax = ω2

0/a with energy Emax ≡
�E = ω6

0/(6a2). Thus, in order for particles to escape from
the potential well of depth �E over the energy barrier and
subsequently into the range q > qmax, a sufficient amount of
energy needs to be supplied. The lattice dynamics is governed
by the following system of coupled equations:

q̈n + ω2
0qn − aq2

n − κ[qn+1 + qn−1 − 2qn] − F (t) = 0. (2)

The coordinates qn(t) quantify the displacement of the oscil-
lator in the local on-site potential U at lattice site n ∈ [1,N ].
The oscillators, referred to as units, are coupled linearly to
their neighbors with interaction strength κ . A homogeneous
external modulation field F (t) acts globally upon the system.
The field is provided by a periodic monochromatic driving
force of amplitude A, frequency ω, and phase θ0 given as

F (t) = A sin(ωt + θ0). (3)

We use periodic boundary conditions according to qN+1 =
q1 and fix the parameters as follows: ω2

0 = 2, θ0 = 0, and
a = 1, yielding �E = 4/3. In what follows, we apply a very
weak external periodic field of small amplitude A = 0.003
which contributes with a value of mint F (t)qmax = −Aqmax =
−0.006 to a diminutive lowering of the potential barrier only.
A deterministic escape scenario in the conservative, undriven
limit of system (2) has been explored in Ref. [7]. The system
(2) has been integrated numerically using a fourth-order
Runge-Kutta scheme. In our simulations, the chain consists
of N = 100 units. The units are initialized such that the
positions of all units are randomized around the bottom of
the potential q0 = 0 in the range |qn(0) − q0| < 0.1 so that
the energy of a unit does not exceed the value E0 = 0.01 =
0.0075�E and hence is negligibly small compared to the
barrier energy �E. The whole chain is thus initialized close
to an almost homogeneous state, but yet sufficiently displaced
in order to generate nonvanishing interactions, enabling the
exchange of energy among the coupled units. Starting from a
random pattern with units containing vanishingly little energy
compared to the barrier energy, the question then is, what is
the impact of the very weak periodic driving force regarding
escape of the chain over the barrier? As far as the choice of
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the frequency of the external periodic field ω is concerned,
a value close to the frequency of harmonic oscillations of the
units close to the bottom of the potential well, ω0 = √

2, seems
appropriate since for a start phonons need to be excited on the
chain. The band of phonon frequencies ω is determined by

ω2
ph = ω2

0 + 4κ sin2

(
k

2

)
, (4)

with wave numbers k ∈ [0,π ]. The breathers emerging on
the chain have their frequencies below the lower edge of the
phonon band.

For a driving frequency ω = 1.4 � √
2 the chain rapidly

attains a nonequilibrium steady state of almost uniform
amplitude, qn(t) = q0(t), to which it remains entrained for
some time. This state is in very good agreement with the
solution obtained from the linear system, which for zero initial
conditions qn(0) = q̇n(0) = 0 is given by

qn(t) = q0(t) = Aω

ω2
0 − ω2

[
1

ω
sin(ωt) − 1

ω0
sin(ω0t)

]
. (5)

Using addition theorems, we can express the solution q0(t) for
ω0 � ω as

q0(t) � 2A

ω2
0 − ω2

cos

(
ω + ω0

2
t

)
sin

(
ω − ω0

2
t

)
. (6)

The (slowly varying) envelope of q0(t) attains its maximal am-
plitude at t = π/(ω − ω0). At this moment, despite the fact that
the amplitude of the chain has grown already (to the brink of
the weakly anharmonic regime), the amount of gained energy
remains too small to raise the chain near the potential barrier.
Nevertheless, as the chain is initialized in a nonhomogeneous
state (albeit of low amplitude), the units perform small-scale
fluctuations around the nonequilibrium uniform steady state
giving the possibility to render the latter unstable. For near-
resonance driving, ω � ω0, we adopt the parameter values
such that v0 = 2A/(ω2

0 − ω2) � 1, bounding accordingly the
amplitude of q0(t) � v0 cos[0.5(ω + ω0)t] sin[0.5(ω − ω0)t].
While the chain retains the nonequilibrium steady-state solu-
tion q0(t) with some more growth of its amplitude, the weakly
nonlinear regime is entered (see also below). In the following,
we perform a stability analysis of the uniform nonequilibrium
steady-state solution q0(t). Toward that end, we write with
respect to spatial perturbations un(t),

qn(t) = q0(t) + un(t). (7)

For the imposed periodic boundary conditions, we express the
perturbations as a Fourier-series expansion,

un(t) =
∑

k

ξk(t) exp(ikn) + c.c., (8)

with wave numbers k ∈ [0,π ] yielding a Mathieu-type equa-
tion for the mode amplitudes ξk ,

ξ̈k +
{
ω2

ph − 2au0 cos

(
ω + ω0

2
t

)
sin

(
ω − ω0

2
t

)}
ξk = 0,

(9)
where ωph is given in Eq. (4) and u0 is the amplitude of the
nonequilibrium steady-state solution in the weakly nonlinear
regime.
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FIG. 1. (Color online) Time evolution of the spatial Fourier
transform of qn(t). The values of the parameters are ω2

0 = 2, a = 1,
A = 0.003, ω = 1.4, θ0 = 0, and κ = 0.1.

We investigated the instability region of this Mathieu-type
equation in the A-k parameter plane for driving frequency
ω = 1.4. For A = 0.003, the position of the bottom of
the instability band is at kc � 0.16 determining the critical
unstable wave number. Thus the creation of a pattern consisting
of localized humps (breathers), with wavelength determined
by λc = 2π/kc, can be expected. In fact, the time evolution of
the spatial Fourier transform,

qn(t) =
∑

k

ak(t) exp(ikn) + c.c., (10)

displayed [for one realization of frozen noise |qn(0) − q0| <

0.1 and pn(0) = 0] in Fig. 1, corroborates this feature. For
times t � 400 (corresponding to 90 periods T0 = 2π/ω0 of
harmonic oscillations near the bottom of the potential well),
the chain departs from the regime of nearly uniform steady
state, which is indicated in the spatial Fourier spectrum by the
formation of pronounced Fourier components in the domain
of low wave numbers.

In accordance with our stability analysis, one notices for
the spatiotemporal evolution of the coordinates qn(t) that due
to the instability of the steady state, and the ensuing energy
exchange among the units, after some time small fractions
of energy can become localized in humps (breathers). We
observe that a pattern evolves over the course of time where
for some lattice sites the amplitudes grow considerably while
remaining small in the adjacent regions. That is, an array
of large-wavelength (small-wave-number) chaotic breathers
is formed. Upon moving, these breathers tend to collide
inelastically with others. In fact, various breathers merge
to form larger-amplitude breathers, proceeding preferably
such that the larger-amplitude breathers grow at the expense
of the smaller ones. As a result, more energy becomes
strongly concentrated within confined regions of the chain.
If at least one of the breathers can be sufficiently strongly
amplified on a segment of the lattice such that the associated
maximal amplitude grows to the proximity of the barrier
level, then a crossing of the energy barrier for this segment
becomes achievable. Moreover, in Ref. [7] it was shown that
such a localized state might adopt the hairpin shape of the
critical localized mode (transition state), and if the involved
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FIG. 2. (Color online) Spatiotemporal pattern of the coordinates
qn(t) prior to escape for very weak periodic driving. The values of
the parameters are ω2

0 = 2, a = 1, A = 0.003, ω = 1.4, θ0 = 0, and
κ = 0.1. The pattern is shown up to times shortly before the escape
of the chain takes place.

amplitudes become overcritical, escape is realized. However,
for this to happen, at first one unit has to absorb sufficient
energy to completely surmount the barrier. For our choice of
parameter values, the energy of the transition state amounts to
1.35�E [7]. We emphasize that it is the comparatively high
mobility of the chaotic breathers leading to collisions with
other (standing and/or moving) breathers that enhances the
concentration of energy.

In Fig. 2, we show a typical spatiotemporal pattern qn(t) for
a very weakly driven chain for the same realization of frozen
noise |qn(0) − q0| < 0.1 and pn(0) = 0 as in Fig. 1. A few
moving localized humps (chaotic breathers) are discernible.
After ∼ 1690 time units, the chain adapts locally a hairpin-
like configuration, and by passing through the latter with
sufficiently large (positive) velocities, a subsequent escape of
the involved units is initiated. Return of the escaped units
over the barrier into the original potential well is virtually
excluded, and consecutively all units, being pulled by the
already escaped ones, manage to climb over the barrier.
Eventually the chain propagates freely beyond the potential
barrier with increasing kinetic energy. We emphasize that the
global escape of the chain relies on appropriate cooperations
of the chain units leading to enhanced energy concentration—
an effect that is absent for uncoupled units. In fact, for
vanishing coupling κ = 0 none of the periodically driven
units escaped during the long simulation time Ts = 105 ∼
2252T0 = 2π/ω0.

To quantify the change of the energy of the chain
in response to the external driving and internal processes
of energy redistribution, we attribute to each unit a site
energy

En = Ekin,n + Epot,n + Edriv,n, (11)

FIG. 3. (Color online) Temporal evolution of the average kinetic
(solid line) and average potential (dashed line) energy for weak
periodic driving for coupled units (κ = 0.1) and uncoupled units
(κ = 0) as indicated in the plot. The values of the remaining
parameters are ω2

0 = 2, a = 1, A = 0.003, ω = 1.4, and θ0 = 0. The
time evolution is shown up to times shortly before the escape of the
chain takes place.

where the kinetic site energy, the potential site energy, and the
driving energy are given by

Ekin,n = 1

2
q̇2

n, (12)

Epot,n = U (qn) + κ

4
(qn+1 − qn)2 + κ

4
(qn − qn−1)2, (13)

Edriv,n = F (t)qn, (14)

respectively, and we compute the average kinetic energy and
the average potential energy of the chain defined as

Ēkin = 1

N

N∑
n=1

1

T

∫ T

0
Ekin,n(t)dt, (15)

Ēpot = 1

N

N∑
n=1

1

T

∫ T

0
Epot,n(t)dt. (16)

Due to its diminutive size, the contribution of the driving
energy Edriv can be ignored.

Figure 3 shows the temporal evolution of Ēkin and Ēpot

contained in the chain of coupled units. Throughout the
time, the chain of coupled units gains on average kinetic
and potential energy from the external driving field. Up to
times t � 400, when the chain is still in the nearly uniform
nonequilibrium steady state, the average potential and kinetic
energy are of equal amount. For later times, when the first
humps form on the chain, the dynamics enters the weakly
nonlinear regime coinciding with the fact that the ratio of the
anharmonic part and the harmonic part of the potential exceeds
a threshold value, viz.

a
3

∑
n |qn|3

ω2
0

2

∑
n q2

n

> 0.1. (17)
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As a hallmark of soft potentials, the energy is on average
not equally divided between potential and kinetic ones, as for
a soft oscillator the oscillation frequency decreases and the
density of states increases with increasing amplitude (energy).
That is, on average the energy spends relatively more time in
potential form than in kinetic form. For comparison we show
also the average energies for uncoupled units, viz. for κ = 0,
starting with the same initial conditions as the coupled units.
Until t � 400 the behavior of coupled units and uncoupled
units is virtually the same. However, for times t � 400 the
first minor deviations occur, and later at t � 850 the average
kinetic and potential energy of coupled units increases further
monotonically, while for uncoupled units, near stagnation is
found giving evidence that cooperative effects are crucial for
the growth of energy observed for coupled units. Concerning
the degree of localization, it is illustrative to consider the
energy localization parameter

C0(t) = N

∑N
n=1 E2

n( ∑N
n=1 En

)2 (18)

introduced in Ref. [13]. Starting from a state of virtually
equipartition corresponds to C0(0) � 1. Over the course of
time C0(t) increases, indicating that the energy becomes lo-
calized at a few sites. With further enhancement of localization
caused by breather coalescence, C0(t) grows and prior to
escape reaches a value of almost N , being associated with
strong localization of energy at a single site.

In this context, we also consider the average temperature
of the chain defined as the mean kinetic energy in a frame
comoving with the center of mass of the chain as

Tchain = 1
2 〈[q̇n(t) − ¯̇q(t)]2〉, (19)

where ¯̇q is the velocity of the center of mass. Figure 4 shows the
temporal behavior of the system temperature up to the moment
when the first unit surmounts the potential barrier initiating
global escape. Comparing the behaviour of the average kinetic
energy Ēkin and the temperature of the chain Tchain, it becomes
clear that the latter follows the former, T � (0.5 − 0.8)Ēkin,

FIG. 4. (Color online) Temperature of the chain for weak pe-
riodic driving. The values of the parameters are ω2

0 = 2, a = 1,
A = 0.003, ω = 1.4, θ0 = 0, and κ = 0.1. The time evolution is
shown up to times shortly before the escape of the chain takes place.

and thus, comparatively, the kinetic energy of the center of
mass of the chain diminishes as time progresses.

During the time when the chain is still in the linear regime
(t � 400), the temperature remains constant indicating little
variability between the units (see above). Upon entering the
nonlinear regime related with the emergence of breathers,
the average temperature increases monotonically but with a
weakly varying rate. In fact, after 1000 time units (equivalent
to ∼227 periods of harmonic oscillations near the bottom of
the potential well), the slope of the graph increases further,
indicating a regime of enhanced interactions (“collisions”)
caused by moving chaotic breathers traversing the chain
(see below). With further growth of the temperature along
with enhanced localization of energy, the chain eventually
overcomes the potential barrier. The temperature exhibits a
stretched exponential time dependence

Tchain ∼ exp(atb) (20)

with parameter values a � 0.01 and b � 0.75. Analogous
behavior was found in the reverse problem concerning the
relaxation dynamics of a lattice chain which is initially
thermalized and afterward put in contact with a cold bath
[14,15].

To gain more insight into the nature of the escape process,
we consider the rate of change of the site energy,

Ėn = κ

2
[(qn+1 − qn)(q̇n+1 − q̇n) − (qn − qn−1)(q̇n − q̇n−1)]

+F (t)q̇n + Ḟ (t)qn. (21)

The energy of a unit can be changed via two channels. There
is the possibility of energy exchange with the external field
F (t) involving both the velocities q̇n and coordinates qn of
a unit. With proper phase relations between the oscillations
of a coordinate qn(t) and the derivative of the external
periodic field Ḟ (t) and/or between the velocity q̇n(t) and the
external periodic field F (t), a unit can gain energy during an
interval �t providing

∫ t+�t

t
dτ [q̇n(τ )F (τ ) + qn(τ )Ḟ (τ )] > 0.

In particular, during the initial stage of linear behavior of the
system, regardless of whether it is coupled or uncoupled, its
energy gain from the external field is fairly pronounced. This
behavior is characterized by nearly in-phase motion of the
derivative of the external field Ḟ (t) and the mean value of the
coordinates q̄ whose evolution is determined by Eq. (5) as well
as in-phase motion of the mean value of the velocities ¯̇q(t) and
the external field F (t).

Upon entering the anharmonic regime for coupled units,
a pattern of localized humps arises, which naturally is
impossible for noncoupled units. The question is, what is
the mechanism of ongoing energy injection into breathers
being responsible for their observed growth? With the onset of
spatiotemporal chaos, the almost in-phase coherence between
q̄ and Ḟ (t) on the one hand, and between ¯̇q and F (t) on the
other, can get temporarily and/or locally lost impeding further
energy growth. Nonetheless, there are periods during which
the phase correlations are maintained so that (at least locally)
energy pumping from the external field into the corresponding
units of the chain is accomplishable.

In addition, the permanent impact of the external periodic
field is that itinerant chaotic breathers merge eventually
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FIG. 5. (Color online) Work done on the chain by the weak
periodic driving for κ = 0 (dashed line) and κ = 0.1 (solid line). The
values of the remaining parameters are ω2

0 = 2, a = 1, A = 0.003,
ω = 1.4, and θ0 = 0.

with large-amplitude breathers. In fact, in between the few
large-amplitude standing breathers, the external driving, with
frequency almost coinciding with the frequency at the lower
edge of the phonon band, creates permanently a phonon “bath”
background feeding energy into arising small-amplitude
(chaotic) breathers. We emphasize that the cooperativity of
the units plays a vital role in achieving escape in such an
effective and low-energy cost manner. To gain more insight
into the energy gain of the coupled chain, we plot in Fig. 5
the work done by the external field on the chain, which is
determined by

W (t) = 1

N

N∑
n=1

∫ t

0
F (τ )q̇n(τ )dτ. (22)

During the initial linear regime, characterized by almost
in-phase motion of the external field F (t) and the mean value of
the velocities ¯̇q, the work done on the uncoupled units and the
coupled ones coincides. However, at later times the difference
becomes drastic as the work done on the coupled units
increases over the course of time, whereas the work done on the
uncoupled units is subdued and even diminishes temporarily.
For the former, this means that on average the velocities of
the units not involved in standing large-amplitude breathers
enhance in conjunction with the external periodic field.
This instigates motion of small-amplitude chaotic breathers
(emanating from the phonon background) along the chain,
and the energy of the latter gets absorbed by standing higher-
amplitude breathers upon coalescence. Furthermore, as long
as the standing breathers are of undercritical amplitude, and
hence their frequency remains close to the driving frequency,
direct (resonant) injection of energy from the external field
into them is possible, as a result of which the amplitude of
the latter grows and its frequency gets shifted further below
the phonon band. Eventually for overcritical amplitudes the
resulting mismatch between the frequency of the breathers
and the frequency of the external field becomes too great for
further direct energy feeding from the external field into the
breather. Then the only way for a breather to gain more energy

is by means of internal energy distribution between the units
of the chain.

The internal mechanism of energy exchange along the chain
is due to the coupling term being responsible for the energy
exchange of a unit with its nearest neighbors via the springs
connecting the units. The larger the stress |qn±1 − qn|—the
potential energy stored in the spring—and/or the velocities
|q̇n±1|, |q̇n|, the higher is the rate of internal change of the site
energy. The internal exchange of energy between neighboring
units is blocked when qn±1 = qn or q̇n±1 = −q̇n, that is, when
neighboring oscillators perform equal amplitude in-phase
motion or out-of-phase motion with respect to each other with
opposite sign of velocities. Moreover, once a unit has acquired
a high energy, it is retained for a fairly long time due to the fact
that in a soft oscillator the energy spends relatively more time in
potential than in kinetic form. The reason for this is that in soft
potentials the oscillation frequency decreases with increasing
amplitude. In conjunction with the fact that the density of states
increases with increasing amplitude, attaining and preserving
higher amplitudes is entropically more favorable (see also
[16]). Thus, during the major part of an oscillation period
of a unit, after it has gained energy from the external field, its
neighbors, or impacting moving breathers, the displacement
of this unit remains large while the velocity is low. Therefore,
this entropic localization mechanism impedes the energy
exchange of a higher-amplitude unit with the surroundings.
Conclusively, localization of energy minimizes the free energy
as it is favored, with respect to maximization of entropy, that
the energy gaining units populate regions in phase space where
the density of states is higher.

Finally, we present our results regarding the mean escape
time Tesc of the chain. The escape time for the chain is defined
as the average of the moments at which the N amplitudes
of the escaping units pass the value q = 200 = 100qmax

beyond the barrier location. Tesc versus the driving frequency
for a small driving amplitude A = 0.003 is displayed in
Fig. 6. The averages were performed over 100 realizations
of random initial conditions. There is a window of frequencies
1.395 � ω � 1.437 for which speedy escape is accomplished,

FIG. 6. (Color online) Mean escape time of the chain as a
function of the driving frequency ω for a small fixed driving strength
A = 0.003. The values of the remaining parameters are ω2

0 = 2,
a = 1, A = 0.003, θ0 = 0, and κ = 0.1.

012906-5



HENNIG, MULHERN, BURBANKS, AND SCHIMANSKY-GEIER PHYSICAL REVIEW E 89, 012906 (2014)

and outside of this window not a single event of escape
takes place throughout the simulation time Ts = 105. The
window of the driving frequencies associated with speedy
escape shown in Fig. 6 has an overlap with the phonon
band penetrating the latter from its lower edge, underlining
the fact that permanently impinging phonons (arising as the
result of driving the system within this frequency range) are
paramount for the creation of breathers promoting eventually
the escape process. These breathers have frequencies contained
in the window of speedy escape just below the phonon
band.

In summary, in this study we have investigated the escape
problem of a chain of harmonically coupled units over the
barrier of a metastable potential. Energy is injected into
the system by means of an applied external time-periodic
field. Notably, even for a very weak driving force we have
observed fast escape for a chain situated initially extremely
close to the bottom of the potential well and thus containing
a vanishingly small amount of energy. For a suitably chosen
driving frequency almost coinciding with the frequency at the
lower edge of the phonon band of linear oscillations, as a start,
an almost uniform oscillating state of the chain is excited.
The amplitude of the latter rises (slowly) in time, and upon
entering the weakly nonlinear regime the almost uniform state
becomes unstable with respect to spatial perturbations. This
triggers the formation of a few localized humps (standing
breathers) coexisting with a phonon “bath” background in
between them. Due to the effect of entropic localization for the

standing breathers, their energy-reduction process is impeded.
Contrarily, the process in the other direction is entropically
favored. That is, due to the fact that the driving frequency lies
just below the phonon band, further resonant energy pumping
by the external field into standing breathers is possible,
provided a proper phase relation is retained between them.
In fact, the associated growth of the amplitude of the breathers
enhances even entropic localization. However, as with growing
amplitude, the frequency of a breather diminishes, and there
results a frequency mismatch between the external field and the
standing large-amplitude breather hampering direct substantial
energy feeding from the external field into it. Therefore, at this
stage the only way a breather can gain more energy is by
processes of internal energy redistribution along the chain.
Conclusively, choosing the frequency of the external driving
just below the phonon band is advantageous for two reasons:
First, emerging standing breathers can become amplified by
direct energy gain from the (almost) resonant external field. At
the same time, externally driving with a frequency almost equal
to that of harmonic oscillations near the bottom of the potential
well generates permanently a phonon “bath” background
between the standing breathers forming the source for the
emergence of mobile chaotic breathers. The mergence of the
itinerant chaotic breathers with standing breathers contributes
to their growth. Eventually for overcritical amplitudes a
standing breather adopts the shape and energy content of the
transition state, and by passing through the latter, escape of the
chain over the barrier gets instigated.
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