668 research outputs found

    Time Reversal and Exceptional Points

    Full text link
    Eigenvectors of decaying quantum systems are studied at exceptional points of the Hamiltonian. Special attention is paid to the properties of the system under time reversal symmetry breaking. At the exceptional point the chiral character of the system -- found for time reversal symmetry -- generically persists. It is, however, no longer circular but rather elliptic.Comment: submitted for publicatio

    The Chirality of Exceptional Points

    Get PDF
    Exceptional points are singularities of the spectrum and wave functions which occur in connection with level repulsion. They are accessible in experiments using dissipative systems. It is shown that the wave function at an exceptional point is one specific superposition of two wave functions which are themselves specified by the exceptional point. The phase relation of this superposition brings about a chirality which should be detectable in an experiment.Comment: four pages, one postscript figure, to be submitted to PR

    Development of an integrated set of research facilities for the support of research flight test

    Get PDF
    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements

    Chaotic Scattering in the Regime of Weakly Overlapping Resonances

    Full text link
    We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two antennas at room temperature in the regime of weakly overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz the resonator simulates a chaotic quantum system. The distribution of the elements of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the autocorrelation function if S to a theoretical expression based on random--matrix theory. We find very good agreement below but not above 10.1 GHz

    Quantum Chaotic Scattering in Microwave Resonators

    Full text link
    In a frequency range where a microwave resonator simulates a chaotic quantum billiard, we have measured moduli and phases of reflection and transmission amplitudes in the regimes of both isolated and of weakly overlapping resonances and for resonators with and without time-reversal invariance. Statistical measures for S-matrix fluctuations were determined from the data and compared with extant and/or newly derived theoretical results obtained from the random-matrix approach to quantum chaotic scattering. The latter contained a small number of fit parameters. The large data sets taken made it possible to test the theoretical expressions with unprecedented accuracy. The theory is confirmed by both, a goodness-of-fit-test and the agreement of predicted values for those statistical measures that were not used for the fits, with the data

    Evidence for Neutrinoless Double Beta Decay

    Get PDF
    The data of the Heidelberg-Moscow double beta decay experiment for the measuring period August 1990 - May 2000 (54.9813 kg y or 723.44 molyears), published recently, are analyzed using the potential of the Bayesian method for low counting rates. First evidence for neutrinoless double beta decay is observed giving first evidence for lepton number violation. The evidence for this decay mode is 97% (2.2\sigma) with the Bayesian method, and 99.8% c.l. (3.1\sigma) with the method recommended by the Particle Data Group. The half-life of the process is found with the Bayesian method to be T_{1/2}^{0\nu} = (0.8 - 18.3) x 10^{25} y (95% c.l.) with a best value of 1.5 x 10^{25} y. The deduced value of the effective neutrino mass is, with the nuclear matrix elements from [Sta90,Tom91] = (0.11 - 0.56) eV (95% c.l.), with a best value of 0.39 eV. Uncertainties in the nuclear matrix elements may widen the range given for the effective neutrino mass by at most a factor 2. Our observation which at the same time means evidence that the neutrino is a Majorana particle, will be of fundamental importance for neutrino physics. PACS. 14.69.Pq Neutrino mass and mixing; 23.40.Bw Weak-interaction and lepton (including neutrino) aspects 23.40.-s Beta decay; double beta decay; electron and muon capture.Comment: 14 pages, psfile, 7 figures, Published in Modern Physics Letters A, Vol. 16, No. 37 (2001) 2409-2420, World Scientific Publishing Company, Home Page: http://ejournals.wspc.com.sg/mpla/16/1637/S0217732301005825.html, Home Page of Heidelberg Non-Accelerator Particle Physics Group: http://www.mpi-hd.mpg.de/non_acc
    • …
    corecore