1,428 research outputs found

    Improving Missing Data Imputation with Deep Generative Models

    Full text link
    Datasets with missing values are very common on industry applications, and they can have a negative impact on machine learning models. Recent studies introduced solutions to the problem of imputing missing values based on deep generative models. Previous experiments with Generative Adversarial Networks and Variational Autoencoders showed interesting results in this domain, but it is not clear which method is preferable for different use cases. The goal of this work is twofold: we present a comparison between missing data imputation solutions based on deep generative models, and we propose improvements over those methodologies. We run our experiments using known real life datasets with different characteristics, removing values at random and reconstructing them with several imputation techniques. Our results show that the presence or absence of categorical variables can alter the selection of the best model, and that some models are more stable than others after similar runs with different random number generator seeds

    Antireflective nanotextures for monolithic perovskite silicon tandem solar cells

    Get PDF
    Recently, we studied the effect of hexagonal sinusoidal textures on the reflective properties of perovskite silicon tandem solar cells using the finite element method FEM . We saw that such nanotextures, applied to the perovskite top cell, can strongly increase the current density utilization from 91 for the optimized planar reference to 98 for the best nanotextured device period 500 nm and peak to valley height 500 nm , where 100 refers to the Tiedje Yablonovitch limit. [D. Chen et al., J. Photonics Energy 8, 022601, 2018 , doi 10.1117 1.JPE.8.022601] In this manuscript we elaborate on some numerical details of that work we validate an assumption based on the Tiedje Yablonovitch limit, we present a convergence study for simulations with the finite element method, and we compare different configurations for sinusoidal nanotexture

    Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots

    Get PDF
    A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.Comment: 4 pages, 4 figure

    Optical simulations of advanced light management for liquid phase crystallized silicon thin film solar cells

    Get PDF
    Light management is a key issue for highly efficient liquid phase crystallized silicon LPC Si thin film solar cells and can be achieved with periodic nanotextures. They are fabricated with nanoimprint lithography and situated between the glass superstrate and the silicon absorber. To combine excellent optical performance and LPC Si material quality leading to open circuit voltages exceeding 640 mV, the nanotextures must be smooth. Optical simulations of these solar cells can be performed with the finite element method FEM . Accurately simulating the optics of such layer stacks requires not only to consider the nanotextured glass silicon interface, but also to adequately account for the air glass interface on top of this stack. When using rigorous Maxwell solvers like the finite element method FEM , the air glass interface has to be taken into account a posteriori, because the solar cells are prepared on thick glass superstrates, in which light is to be treated incoherently. In this contribution we discuss two different incoherent a posteriori corrections, which we test for nanotextures between glass and silicon. A comparison with experimental data reveals that a first order correction can predict the measured reflectivity of the samples much better than an often applied zeroth order correctio

    Increased fluorescence of PbS quantum dots in photonic crystals by excitation enhancement

    Get PDF
    We report on the enhanced fluorescence of lead sulfide quantum dots interacting with leaky modes of slab type silicon photonic crystals. The photonic crystal slabs were fabricated, supporting leaky modes in the near infrared wavelength range. Lead sulfite quantum dots which are resonant in the same spectral range were prepared in a thin layer above the slab. We selectively excited the leaky modes by tuning the wavelength and angle of incidence of the laser source and measured distinct resonances of enhanced fluorescence. By an appropriate experiment design, we ruled out directional light extraction effects and determined the impact of enhanced excitation. Three dimensional numerical simulations consistently explain the experimental findings by strong near field enhancements in the vicinity of the photonic crystal surface. Our study provides a basis for systematic tailoring of photonic crystals used in biological applications such as biosensing and single molecule detection, as well as quantum dot solar cells and spectral conversion application

    Female mice respond to male ultrasonic ‘songs’ with approach behaviour

    Get PDF
    The ultrasonic vocalizations of mice are attracting increasing attention, because they have been recognized as an informative readout in genetically modified strains. In addition, the observation that male mice produce elaborate sequences of ultrasonic vocalizations (‘song’) when exposed to female mice or their scents has sparked a debate as to whether these sounds are—in terms of their structure and function—analogous to bird song. We conducted playback experiments with cycling female mice to explore the function of male mouse songs. Using a place preference design, we show that these vocalizations elicited approach behaviour in females. In contrast, the playback of pup isolation calls or whistle-like artificial control sounds did not evoke approach responses. Surprisingly, the females also did not respond to pup isolation calls. In addition, female responses did not vary in relation to reproductive cycle, i.e. whether they were in oestrus or not. Furthermore, our data revealed a rapid habituation of subjects to the experimental situation, which stands in stark contrast to other species' responses to courtship vocalizations. Nevertheless, our results clearly demonstrate that male mouse songs elicit females' interest

    Optimized diamond inverted nanocones for enhanced color center to fiber coupling

    Get PDF
    Nanostructures can be used for boosting the light outcoupling of color centers in diamond; however, the fiber coupling performance of these nanostructures is rarely investigated. Here, we use a finite element method for computing the emission from color centers in inverted nanocones and the overlap of this emission with the propagation mode in a single-mode fiber. Using different figures of merit, the inverted nanocone parameters are optimized to obtain maximal fiber coupling efficiency, free-space collection efficiency, or rate enhancement. The optimized inverted nanocone designs show promising results with 66% fiber coupling or 83% free-space coupling efficiency at the tin-vacancy center zero-phonon line wavelength of 619 nm. Moreover, when evaluated for broadband performance, the optimized designs show 55% and 76% for fiber coupling and free-space efficiencies respectively, for collecting the full tin-vacancy emission spectrum at room temperature. An analysis of fabrication insensitivity indicates that these nanostructures are robust against imperfections. For maximum emission rate into a fiber mode, a design with a Purcell factor of 2.34 is identified. Finally, possible improvements offered by a hybrid inverted nanocone, formed by patterning into two different materials, are investigated, and increases the achievable fiber coupling efficiency to 71%.Comment: The following article has been accepted by Applied Physics Letters. After it is published, it will be found at https://doi.org/10.1063/5.005033

    Light management with sinusoidal nanotextures

    Get PDF
    Nanoimprint lithography can be used to fabricate sinusoidal nanotextures on a large scale. We present optical and numerical results for sinusoidal nanotextures in two types of solar cells thin film c Si and perovskite silicon tandem solar cell
    corecore