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Grit Köppel,a Martin Hammerschmidt,b, c Sven Burger,b, c Steve Albrecht,a and Christiane Beckera

aHelmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstr. 5, D-12489 Berlin
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ABSTRACT
Recently, we studied the effect of hexagonal sinusoidal textures on the reflective properties of perovskite-silicon tandem
solar cells using the finite element method (FEM). We saw that such nanotextures, applied to the perovskite top cell,
can strongly increase the current density utilization from 91% for the optimized planar reference to 98% for the best
nanotextured device (period 500 nm and peak-to-valley height 500 nm), where 100% refers to the Tiedje-Yablonovitch
limit.*

In this manuscript we elaborate on some numerical details of that work: we validate an assumption based on the
Tiedje-Yablonovitch limit, we present a convergence study for simulations with the finite-element method, and we compare
different configurations for sinusoidal nanotextures.

Keywords: numerical approximation and analysis, spectral properties, solar energy.

1. INTRODUCTION
The power conversion efficiency (PCE) of single-junction silicon solar cells, which are by far the most dominant pho-
tovoltaic technology, is theoretically limited to 29.4%.1 Currently, perovskite-silicon tandem solar cells are the most
investigated concept to overcome this limit, because they allow for the reduction of thermalization losses at short wave-
lengths. Because of their steep absorption edge, tuneable bandgap, and high demonstrated solar cell efficiencies, perovskite
materials are an ideal candidate as a top-cell material.2

For monolithic tandem solar cells, the power output is maximal when the current densities generated by the top and
bottom cells are matched, hence if the available light is distributed equally between the two cells. For perovskite-silicon
tandem cells with a wafer-based silicon bottom cell, current matching is mainly achieved by adjusting the thickness of the
perovskite layer. For a planar device design, a global optimization of the layer thicknesses in the top cell can be easily
performed. Such an optimization not only allows current matching to be reached, but also for the reflective losses of the
solar cell to be minimized via optimizing the mutual interference of the thin-film layer stack. However, even after this
optimization about 7 mA/cm2 are lost by reflection, which is about 15% of the totally available current density in the
350–1200 nm wavelength range.3

In a recent study we investigated the effect of nanotextures in the perovskite layer stack on the reflective properties
of the tandem solar cells.4 We used hexagonal sinusoidal nanotextures that have proven to strongly reduce reflection at
silicon-oxide silicon interfaces.5–8

We performed the optical simulations with the finite element method (FEM). Newton‘s method allowed us to obtain
the optimal perovskite thickness with very few iterations. We investigated three configurations: (1) all interfaces on top
of the silicon wafer are textured; (2) all interfaces between the silicon wafer and the perovskite layer are textured; and
(3) all interfaces on top of the perovskite layer are textured. The fully textured device showed the strongest antireflective
effect. We chose a nanotexture period of 500 nm, for which the reflective losses can be reduced by more than 2 mA/cm2

with respect to the planar reference in a current-matched tandem device, leading to a maximal achievable current density
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Figure 1. (a) The cell architecture considered in the FEM simulations with a double-side textured top cell. This figure shows the negative
cosine nanotexture, for the positive cosine texture the orientation of the texture is reversed. For the FEM simulations, the upper and
lower simulation domains are enclosed by air and silicon halfspaces, respectively. The light is incident from the air half space (top).
(b) Illustrating the layer thicknesses in our simulated tandem cell. These are the set of optimal layer thicknesses numerically calculated
in Ref. 3. The perovskite thickness has been adapted to take into account the different (n, k) data used in this work. The air and c-Si
layer are treated as infinite half spaces in the simulation. All layer thicknesses except the one of the perovskite are kept constant during
the simulation. All values are in nm. (c) A layer stack with a pyramidally-textured rear side, which was used as reference in Section 3.1.

exceeding 20.2 mA/cm, which translates to a potential PCE increase of about 1.4% (absolute). For these results the peak-
to-valley height of the nanotexture is 250 nm.

We also demonstrated perovskite layers, which were spin-coated onto a sinusoidally nanotextured substrate. According
to these results, configuration (2) currently seems most feasible for experimental realization. For this configuration the
maximal achievable current density is still about 19.7 mA/cm2 in a current-matched tandem device, which is 0.5 mA/cm2

higher than for the flat reference, equivalent to a potential PCE increase of 0.7% (absolute).

In this manuscript we explain some details of the work presented in Ref. 4 in more depth. After explaining the nu-
merical methods in Section 2, we elaborate on these topics in Section 3: (1) checking the validity of applying the Tiedje-
Yablonovitch limit for light trapping in the silicon subcell; (2) a convergence study for the mesh dimensions and used
degree of polynomials in the FEM dimension; and (3) comparing different configurations of the hexagonal nanotexture.

2. METHODS
2.1 Details of the Solar Cell Simulations
Figure 1(a) shows the layer stack used for the simulation. Using the software package JCMsuite, which is based on
the finite element method (FEM), a three-dimensional mesh is created. The maximum side-length of the prismoidal or
tetrahedral elements constituting the mesh is set to λ/n(λ ), where λ is the incident wavelength and n(λ ) is the refractive
index of the material. In this way one grid was generated for every wavelength interval of 100 nm width. More details can
be found in the Section 3.2, where we discuss a convergence study to justify the values used for the final simulations.

The layer stacks with planar perovskite top cells, which we discuss in Section 3.1, were simulated with GenPro4.
This program is developed at Delft University of Technology and can combine wave optics for coherent thin layers and
ray optics for thick incoherent layers.9 For planar devices with infinitely thick silicon absorbers results produces with
JCMsuite and GenPro4 match well.4



The complex refractive index spectra (n, k) used for the simulations were determined as follows: perovskite data
were retrieved using ellipsometry and transmittance/reflectance spectrophotometry.10 For NiOx

11 and the sputtered ITO
layers, ellipsometry and the program RIGVM was used.12 The data for PCBM was extracted from reflectance/transmittance
measurements with the method described in Refs. 13, 14. The SnO2 layers were deposited using plasma-enhanced atomic
layer deposition and characterized with ellipsometry.15 The data for the RF-PECVD hydrogenated amorphous silicon
(a-Si:H) layers16 were extracted using SCOUT.17 For LiF18 and Spiro-OMeTAD19 we used data from literature.

2.2 Hexagonal Sinusoidal Nanotextures
The hexagonal sinusoidal nanotextures can be described with the equation
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where the structure phase φ allows us to shape the hexagonal texture. Setting φ = 0 leads to what we call a positive cosine
(“+cos”) structure whereas φ = π shapes the negative cosine (“−cos”) structure, which is illustrated in Fig. 1(a). The
desired peak-to-valley height h is set as input value; H(φ) is the peak-to-valley height of the non-normalized texture5
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(
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)
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For the structure phases used in this work we have H(0) = H(π) = 9
8 .

The function is scaled to our desired period P, which is the side length of the rhombus-shaped unit cell, with the
substitutions

x→ 2π√
3P

x and y→ 2π√
3P

y. (3)

The aspect ratio a is defined as a = h/P; small or big values of a lead to rather flat or steep textures, respectively. Note that
we only considered negative cosine structures in Ref. 4.

3. RESULTS
3.1 Validity of Lambertian Approximation
In the FEM simulations presented in Ref. 4 we treated the Si layer as an infinitely thick layer represented by a perfectly
matched layer (PML). For estimating the absorption in a 160 µm-thick Si layer with perfect light trapping, we multiplied
the absorption for the infinite Si layer A∞

Si (equivalent to the transmission into this layer) with a factor arising from the
Tiedje-Yablonovitch limit,20

ASi(λ ,L) = A∞
Si(λ )

α(λ )

α(λ )+
(

4 [nSi(λ )]
2 L

)−1 . (4)

L and nSi are the layer thickness and the real part of the refractive index of silicon, respectively. Further, we assumed
the absorption of all other layers to be unaffected; the difference between the absorption in the infinite Si layer and the
Tiedje-Yablonovitch limit was added to the reflectivity R,

R(λ ,L) = R∞(λ )+A∞
Si(λ )−ASi(λ ,L). (5)

In order to validate the accuracy of this approach, we compared the absorption spectra of the following two cases to
each other: first, a flat perovskite-silicon solar cells with an infinitely thick Si layer [see Fig. 1(b)], where the Si absorption
was corrected according to Eq. (4), here referred to as Tiedje; secondly, a cell with a flat perovskite front side and a 160 µm
Si wafer with a pyramidal rear side, as in 1(c) [see also Ref. 21]. This design we refer to as pyramidal.

Figure 2 shows the absorption spectra for these two cases. Up to around 1000 nm wavelength, hardly any differences
are visible because no light reaches the back of the Si wafer. For longer wavelength the Si absorption is higher for the Tiedje
case (19.73 mA/cm2 vs. 19.00 mA/cm2), which is not surprising because this is the upper limit for light trapping. On the
other hand, the absorption in the front ITO layer is underestimated in the Tiedje case (0.93 mA/cm2 vs. 1.55 mA/cm2).
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Figure 2. Absorption profiles of (a) a planar solar cell with an infinitely thick silicon absorber [see Fig. 1(b)], where the Si absorption is
corrected for 160 µm layer thickness with optimal light trapping according to the Tiedje-Yablonovitch limit as in Eq. (4); and (b) a solar
cell with a planar front side and a pyramidally textured silicon back side, as illustrated in Fig. 1(c).

In the Tiedje case, only the light which passes the ITO layer on its way from air into silicon contributes to the absorption
in ITO. In conrast, in the pyramidal case also the light reflected back from the silicon rear side contributes to the absorption
in ITO. In addition, the pyramids on the rear scatter the light leading to a prolonged light path and hence increased
absorption in all the layers. In the pyramidal case about 0.34 mA/cm2 are absorbed in the intermediate ITO layer, mainly
arising from the long wavelengths. In the Tiedje case, around 0.10 mA/cm2 are absorbed in that layer, the corresponding
absorption area is hardly visible in Fig. 2(b). In the pyramidal case, also the absorption of the layers at the rear side of the
silicon bottom cell is taken into account, which adds up to about 1 mA/cm2.

In summary we can say that our approximation based on the Tiedje-Yablonovitch limit is well suited to estimating
the Si absorption that would be present in a realistic solar cell stack with a pyramidal back reflector. Although this limit
slightly overestimates the absorption compared to the more realistic case, the difference is small enough that the estimate
remains useful. This validates the use of this estimate in Ref. 4.

On the other hand, this estimate should not be used to estimate how losses are distributed among parasitic absorption
and reflection. Since parasitic absorption at the rear side is neglected and light reflected from the rear side does not
contribute to parasitic losses in the top cell (note that this light cannot contribute to absorption in the perovskite layer due
to that layer being non-absorbing at these wavelengths).

3.2 Convergence Study
In order to determine the accuracy of the FEM results a convergence study was performed. For regions without strong
singularities the error of FEM simulations is expected to be proportional to (h/λ )p.22 Therefore, for a sufficiently small
mesh size h, the error can be decreased exponentially by increasing the order p of the polynomials approximating the
solution of Maxwell’s equations in each element. Increasing the polynomial order for every element is typically superfluous
as the local error is not equal everywhere in the computational domain. Therefore a strategy whereby the local error is
first estimated for each element and then the required polynomial order p is set locally for each element should maximize
accuracy while minimizing computational cost.

In order to determine the required order p, a targeted numerical precision should be given. Figure 3 shows the error in
the absorption in both the Si and perovskite layers as a function of the given targeted numerical precision. All solutions
are compared to a reference solution, where the polynomial order was p = 6 for all elements. The absorption in the layers
shows a much smaller error than the given numerical precision. This is because the numerical precision corresponds to the
maximum error in the electric field over the whole domain. In comparison the absorption is calculated by integrating the
field over the whole domain, which tends to reduce the effect of local errors. Nevertheless it is evident that as the targeted
numerical precision is decreased, the error in absorption in the layers also decreases.

Hence, the numerical precision of 10−3, which we used in Ref. 4, leads to a sufficient level of accuracy for solar cell
simulations.
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Figure 4. The maximum achievable matched photocurrent density for the nanotextured tandem perovskite-Si solar cell for a positive and
negative cosine texture as a function of the nanotexture aspect ratio. The nanotexture had 500 nm period. The thickness of the perovskite
layer required for current matching is given as well.

3.3 Comparing Different Sinusoidal Nanotextures
Figure 4 shows the maximum achievable matched photocurrent density for the nanotextured perovskite-Si tandem solar
cell as a function of the texture aspect ratio a. Shown are results for the positive and negative cosine textures, which
we introduced in Section 2.2. Both textures present an increase in the matched photocurrent density upon increasing
the aspect ratio. The matched current density increases due to the texture increasing the amount of light coupled into
the device. The thickness of the perovskite layer needed for current matching in the case of the negative cosine texture
increases monotonically with the aspect ratio. This suggests that the negative cosine texture transmits more light into the
Si bottom cell, which is then balanced by increasing the perovskite thickness until the currents are matched.

In contrast the thickness of perovskite layer in the positive cosine structure initially increases more rapidly than in
the case of the negative cosine before decreasing for aspect ratios up to 0.5. This suggests that positive cosine texture
focuses more light inside the perovskite layer, increasing absorption and thereby necessitating a lower thickness for current
matching. However this effect leads to an overall lower increase in the matched current compared to the negative cosine
texture.

Therefore the negative cosine structure, utilized in Ref. 4, is preferred for light management in perovskite Si tandem
solar cells.

4. CONCLUSIONS AND OUTLOOK
We explained three details of the work presented in Ref. 4 in more depth. (1) We checked the validity of using the Tiedje-
Yablonovitch limit for light trapping in the silicon subcell and saw that this estimate works well for the Si absorption
but strongly underestimates the reflection in the long wavelength regime, because parasitic absorption in the other lay-
ers is strongly underestimated. (2) A convergence study for the mesh dimensions and finite element polynomial degree



showed that the chosen settings lead to highly accurate results. (3) Comparing different configurations of the hexagonal
nanotextures showed a similar trend as in earlier work (Ref. 5).

In order to improve the simulation quality of solar cells with periodically nanotextured structures and thick Si wafers,
the coherent FEM simulations need to be coupled to approaches, which can treat thick layers incoherently. Such approaches
are for example OPTOS23 or GenPro4.9
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