590 research outputs found
New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both
calculable from first principles using various theoretical approaches and of
interest for the understanding of a wide range of questions in many body
physics. Unfortunately, the pair correlation function inferred from
neutron scattering measurements of the differential cross section from different measurements reported in the literature are
inconsistent. We have measured the energy dependence of the total cross section
and the scattering cross section for slow neutrons with energies between
0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the
parahydrogen component) using neutron transmission measurements on the hydrogen
target of the NPDGamma collaboration at the Spallation Neutron Source at Oak
Ridge National Laboratory. The relationship between the neutron transmission
measurement we perform and the total cross section is unambiguous, and the
energy range accesses length scales where the pair correlation function is
rapidly varying. At 1~meV our measurement is a factor of 3 below the data from
previous work. We present evidence that these previous measurements of the
hydrogen cross section, which assumed that the equilibrium value for the ratio
of orthohydrogen and parahydrogen has been reached in the target liquid, were
in fact contaminated with an extra non-equilibrium component of orthohydrogen.
Liquid parahydrogen is also a widely-used neutron moderator medium, and an
accurate knowledge of its slow neutron cross section is essential for the
design and optimization of intense slow neutron sources. We describe our
measurements and compare them with previous work.Comment: Edited for submission to Physical Review
The Importance of Correlations and Fluctuations on the Initial Source Eccentricity in High-Energy Nucleus-Nucleus Collisions
In this paper, we investigate various ways of defining the initial source
eccentricity using the Monte Carlo Glauber (MCG) approach. In particular, we
examine the participant eccentricity, which quantifies the eccentricity of the
initial source shape by the major axes of the ellipse formed by the interaction
points of the participating nucleons. We show that reasonable variation of the
density parameters in the Glauber calculation, as well as variations in how
matter production is modeled, do not significantly modify the already
established behavior of the participant eccentricity as a function of collision
centrality. Focusing on event-by-event fluctuations and correlations of the
distributions of participating nucleons we demonstrate that, depending on the
achieved event-plane resolution, fluctuations in the elliptic flow magnitude
lead to most measurements being sensitive to the root-mean-square, rather
than the mean of the distribution. Neglecting correlations among
participants, we derive analytical expressions for the participant eccentricity
cumulants as a function of the number of participating nucleons,
\Npart,keeping non-negligible contributions up to \ordof{1/\Npart^3}. We
find that the derived expressions yield the same results as obtained from
mixed-event MCG calculations which remove the correlations stemming from the
nuclear collision process. Most importantly, we conclude from the comparison
with MCG calculations that the fourth order participant eccentricity cumulant
does not approach the spatial anisotropy obtained assuming a smooth nuclear
matter distribution. In particular, for the Cu+Cu system, these quantities
deviate from each other by almost a factor of two over a wide range in
centrality.Comment: 18 pages, 10 figures, submitted to PR
First Observation of -odd Asymmetry in Polarized Neutron Capture on Hydrogen
We report the first observation of the parity-violating 2.2 MeV gamma-ray
asymmetry in neutron-proton capture using polarized cold
neutrons incident on a liquid parahydrogen target at the Spallation Neutron
Source at Oak Ridge National Laboratory. isolates the , \mbox{} component of the weak
nucleon-nucleon interaction, which is dominated by pion exchange and can be
directly related to a single coupling constant in either the DDH meson exchange
model or pionless EFT. We measured , which implies a DDH weak coupling of
and a pionless
EFT constant of MeV. We describe the experiment, data
analysis, systematic uncertainties, and the implications of the result.Comment: 6 pages, 5 figure
The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay
Neutron beta decay is one of the most fundamental processes in nuclear
physics and provides sensitive means to uncover the details of the weak
interaction. Neutron beta decay can evaluate the ratio of axial-vector to
vector coupling constants in the standard model, , through
multiple decay correlations. The Nab experiment will carry out measurements of
the electron-neutrino correlation parameter with a precision of and the Fierz interference term to
in unpolarized free neutron beta decay. These results, along with a more
precise measurement of the neutron lifetime, aim to deliver an independent
determination of the ratio with a precision of that will allow an evaluation of and sensitively
test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long
asymmetric spectrometer that guides the decay electron and proton to two large
area silicon detectors in order to precisely determine the electron energy and
an estimation of the proton momentum from the proton time of flight. The Nab
spectrometer is being commissioned at the Fundamental Neutron Physics Beamline
at the Spallation Neutron Source at Oak Ridge National Lab. We present an
overview of the Nab experiment and recent updates on the spectrometer,
analysis, and systematic effects.Comment: Presented at PPNS201
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
This paper presents measurements of the elliptic flow of charged particles as
a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and
200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider
(RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even
for the most central events. For comparison with the Au-Au results, it is found
that the detailed way in which the collision geometry (eccentricity) is
estimated is of critical importance when scaling out system-size effects. A new
form of eccentricity, called the participant eccentricity, is introduced which
yields a scaled elliptic flow in the Cu-Cu system that has the same relative
magnitude and qualitative features as that in the Au-Au system
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at sqrt(sNN) = 200 GeV
This paper describes the measurement of elliptic flow for charged particles
in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is
presented over a wide range of pseudorapidity for three broad collision
centrality classes for the first time at this energy. Two distinct methods of
extracting the flow signal were used in order to reduce systematic
uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV
for all the centralities studied, as observed for minimum-bias collisions at
sqrt(sNN)=130 GeV.Comment: Final published version: the most substantive change to the paper is
the inclusion of a complete description of how the errors from the hit-based
and track-based analyses are merged to produce the 90% C.L. errors quoted for
the combined results shown in Fig.
Latest Results from PHOBOS
This manuscript contains a summary of the latest physics results from PHOBOS,
as reported at Quark Matter 2006. Highlights include the first measurement from
PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of
their possible origin, two-particle correlations, identified particle ratios,
identified particle spectra and the latest results in global charged particle
production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200
System size, energy, centrality and pseudorapidity dependence of charged-particle density in Au+Au and Cu+Cu collisions at RHIC
Charged particle pseudorapidity distributions are presented from the PHOBOS
experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6,
22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The
presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The
measurements were made by the same detector setup over a broad range in
pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle
production as a function of energy, centrality and system size. Comparing Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the overall shape (height and width) of the pseudorapidity distributions
are determined by the number of nucleon participants, N_part. Detailed
comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au
pseudorapidity distributions over the full range of eta is better for the same
N_part/2A value than for the same N_part value, where A denotes the mass
number. In other words, it is the geometry of the nuclear overlap zone, rather
than just the number of nucleon participants that drives the detailed shape of
the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on
Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India,
4-10 February 200
- …
