48,547 research outputs found
Design evolution of a low shock release nut
Design improvements and detailed functional analyses are reviewed to trace the development of a pyroactuated release device with segmented thread design from its intermediate design into one that reduces the levels of shock spectra generated during its operation by 50%. Comparisons of shock output and internal load distribution are presented, along with descriptions of mechanical operation for both designs. Results also show the potential areas where design development activity can gain further progress in lowering actuation shock levels
Transport in very dilute solutions of He in superfluid He
Motivated by a proposed experimental search for the electric dipole moment of
the neutron (nEDM) utilizing neutron-He capture in a dilute solution of
He in superfluid He, we derive the transport properties of dilute
solutions in the regime where the He are classically distributed and rapid
He-He scatterings keep the He in equilibrium. Our microscopic
framework takes into account phonon-phonon, phonon-He, and He-He
scatterings. We then apply these calculations to measurements by Rosenbaum et
al. [J.Low Temp.Phys. {\bf 16}, 131 (1974)] and by Lamoreaux et al.
[Europhys.Lett. {\bf 58}, 718 (2002)] of dilute solutions in the presence of a
heat flow. We find satisfactory agreement of theory with the data, serving to
confirm our understanding of the microscopics of the helium in the future nEDM
experiment.Comment: 10 pages, 5 figures, v
Transport in ultradilute solutions of He in superfluid He
We calculate the effect of a heat current on transporting He dissolved in
superfluid He at ultralow concentration, as will be utilized in a proposed
experimental search for the electric dipole moment of the neutron (nEDM). In
this experiment, a phonon wind will generated to drive (partly depolarized)
He down a long pipe. In the regime of He concentrations and temperatures K, the phonons comprising the heat current
are kept in a flowing local equilibrium by small angle phonon-phonon
scattering, while they transfer momentum to the walls via the He first
viscosity. On the other hand, the phonon wind drives the He out of local
equilibrium via phonon-He scattering. For temperatures below K, both
the phonon and He mean free paths can reach the centimeter scale, and we
calculate the effects on the transport coefficients. We derive the relevant
transport coefficients, the phonon thermal conductivity and the He
diffusion constants from the Boltzmann equation. We calculate the effect of
scattering from the walls of the pipe and show that it may be characterized by
the average distance from points inside the pipe to the walls. The temporal
evolution of the spatial distribution of the He atoms is determined by the
time dependent He diffusion equation, which describes the competition
between advection by the phonon wind and He diffusion. As a consequence of
the thermal diffusivity being small compared with the He diffusivity, the
scale height of the final He distribution is much smaller than that of the
temperature gradient. We present exact solutions of the time dependent
temperature and He distributions in terms of a complete set of normal
modes.Comment: NORDITA PREPRINT 2015-37, 9 pages, 6 figure
Solution of a statistical mechanics model for pulse formation in lasers
We present a rigorous statistical-mechanics theory of nonlinear many mode
laser systems. An important example is the passively mode-locked laser that
promotes pulse operation when a saturable absorber is placed in the cavity. It
was shown by Gordon and Fischer [1] that pulse formation is a first-order phase
transition of spontaneous ordering of modes in an effective "thermodynamic"
system, in which intracavity noise level is the effective temperature. In this
paper we present a rigorous solution of a model of passive mode locking. We
show that the thermodynamics depends on a single parameter, and calculate
exactly the mode-locking point. We find the phase diagram and calculate
statistical quantities, including the dependence of the intracavity power on
the gain saturation function, and finite size corrections near the transition
point. We show that the thermodynamics is independent of the gain saturation
mechanism and that it is correctly reproduced by a mean field calculation. The
outcome is a new solvable statistical mechanics system with an unstable
self-interaction accompanied by a natural global power constraint, and an exact
description of an important many mode laser system.Comment: 10 pages, 3 figures, RevTe
Midcourse maneuver operations program
Midcourse Maneuver Operations Program /MMOP/ computes the required velocity change to correct a spacecraft trajectory. The program establishes the existence of maneuvers which satisfy spacecraft constraints, explores alternate trajectories in the event that some out-of-tolerance condition forces a change in plans, and codes the maneuvers into commands
Costs of Chronic Waterborne Zinc Exposure and the Consequences of Zinc Acclimation on the Gill/Zinc Interactions of Rainbow Trout in Hard and Soft Water
Juvenile rainbow trout were exposed to zinc in both moderately hard water (hardness 5 120 mg CaCO3/L, pH = 8.0, Zn = 150 μg/L or 450 μg/L) and soft water (hardness = 20 mg CaCO3/L, pH = 7.2, Zn = 50 μg/L or 120 μg/L) for 30 d. Only the 450 mg/L zinc–exposed fish experienced significant mortality (24% in the first 2 d). Zinc exposure caused no effect on growth rate, but growth affected tissue zinc levels. Whole body zinc levels were elevated, but gills and liver showed no consistent increases relative to controls over the 30-d. Therefore, tissue zinc residues were not a good indicator of chronic zinc exposure. After the 30-d exposure, physiological function tests were performed. Zinc was 5.4 times more toxic in soft water (control 96 h LC50s in hard and soft water were 869 μg/L and 162 μg/L, respectively). All zinc-exposed trout had acclimated to the metal, as seen by an increase in the LC50 of 2.2 to 3.9 times over that seen in control fish. Physiological costs related to acclimation appeared to be few. Zinc exposure had no effect on whole body Ca2+ or Na+ levels, on resting or routine metabolic rates, or on fixed velocity sprint performance. However, critical swimming speed (UCrit) was significantly reduced in zinc-exposed fish, an effect that persisted in zinc-free water. Using radioisotopic techniques to distinguish new zinc incorporation, the gills were found to possess two zinc pools: a fast turnover pool (T1/2 = 3–4 h) and a slow turnover pool (T1/2 = days to months). The fast pool was much larger in soft water than in hard water, but at most it accounted for \u3c3.5% of the zinc content of the gills. The size of the slow pool was unknown, but its loading rate was faster in soft water. Chronic zinc exposure was found to increase the size of the fast pool and to increase the loading rate of the slow pool
KPP reaction-diffusion equations with a non-linear loss inside a cylinder
We consider in this paper a reaction-diffusion system in presence of a flow
and under a KPP hypothesis. While the case of a single-equation has been
extensively studied since the pioneering Kolmogorov-Petrovski-Piskunov paper,
the study of the corresponding system with a Lewis number not equal to 1 is
still quite open. Here, we will prove some results about the existence of
travelling fronts and generalized travelling fronts solutions of such a system
with the presence of a non-linear spacedependent loss term inside the domain.
In particular, we will point out the existence of a minimal speed, above which
any real value is an admissible speed. We will also give some spreading results
for initial conditions decaying exponentially at infinity
- …
