71,181 research outputs found

    Hoop/column antenna deployment mechanism overview

    Get PDF
    The hoop/column antenna program is directed toward the development of a cost effective, large area, self deploying reflector antenna system. Large surface area antenna systems are required in future space missions involving improved land communications, Earth resources observation, and the study of intergalactic energy sources. The hoop/column antenna is a concept where a large antenna system can be packaged within the Space Transportation System (Shuttle) payload bay, launched into Earth orbit where it is released either for deployment as an Earth observation or communications antenna, or boosted into deep space as an intergalactic energy probe. Various mechanisms and support structures are described that are required to deploy the hoop, which is used to support the antenna reflective surface, and the column that is used to position the antenna feeds and the reflector. It also describes a proof-of-concept model (15 meters in diameter) that is currently being ground tested to determine the adequacy of the deployment mechanisms

    On the use of internal state variables in thermoviscoplastic constitutive equations

    Get PDF
    The general theory of internal state variables are reviewed to apply it to inelastic metals in use in high temperature environments. In this process, certain constraints and clarifications will be made regarding internal state variables. It is shown that the Helmholtz free energy can be utilized to construct constitutive equations which are appropriate for metallic superalloys. Internal state variables are shown to represent locally averaged measures of dislocation arrangement, dislocation density, and intergranular fracture. The internal state variable model is demonstrated to be a suitable framework for comparison of several currently proposed models for metals and can therefore be used to exhibit history dependence, nonlinearity, and rate as well as temperature sensitivity

    Integrated research in constitutive modelling at elevated temperatures, part 2

    Get PDF
    Four current viscoplastic models are compared experimentally with Inconel 718 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used include Bodner's anisotropic model; Krieg, Swearengen, and Rhode's model; Schmidt and Miller's model; and Walker's exponential model

    Recognition of viral glycoproteins by influenza A-specific cross- reactive cytolytic T lymphocytes

    Get PDF
    Two populations of cytolytic T lymphocytes (CTL) generated after influenza A virus infection can be distinguished into one with specificity for the sensitizing hemagglutinin type and a second with cross-reactivity for antigens induced by other type-A influenza viruses. The molecules carrying the antigenic determinants recognized by the cross-reactive CTL were studied. In L-929 cells abortively infected with fowl plague virus, matrix (M) protein synthesis is specifically inhibited, whereas the envelope glycoproteins, hemagglutinin and neuraminidase, are synthesized and incorporated into the plasma membrane. These target cells were lysed by cross-reactive CTL. The envelope proteins of type A/Victoria virus were separated from the other virion components and reconstituted into lipid vesicles that lacked M protein that subsequently were used to prepare artificial target cells. Target-cell formation with vesicles was achieved by addition of fusion-active Sendai virus. These artificial target cells were also susceptible to lysis by cross-reactive CTL. In contrast to previous observations that suggested that the M protein of influenza viruses is recognized by these effector cells, we present evidence that the antigencic determinants induced by the viral glycoproteins are recognized

    Integrated research in constitutive modelling at elevated temperatures, part 1

    Get PDF
    Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development

    Spin dynamics for the Lebwohl-Lasher model

    Get PDF
    A spin dynamics algorithm, combining checkerboard updating and a rotation algorithm based on the local second-rank ordering field, is developed for the Lebwohl-Lasher model of liquid crystals. The method is shown to conserve energy well and to generate simulation averages that are consistent with those obtained by Monte Carlo simulation. However, care must be taken to avoid the undesirable effects of director rotation, and a method for doing this is proposed

    Musculoskeletal adaptations to physical interventions in spinal cord injury

    Get PDF

    First look analysis of geologic ground patterns on ERTS-1 imagery of Missouri

    Get PDF
    Examination of ERTS-1 data for selected areas of Missouri revealed not only many of the known geologic features but also a number of unknown linear, circular and arcuate ground patterns. The number of new geologic elements that have been brought to light as well as the sharp definition and probable extensions of several known geologic features point out the importance of multispectral imagery via satellite and the synoptic views which they provide. To date, analysis and interpretations have been a first-look visual examination of the unenhanced projected images

    Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    Get PDF
    Surface temperatures derived from HCMM data were compared with to those obtained by GOES satellite and the apparent thermal inertia (ATI) calculated. For two dates, the HCMM temperatures appear to be about 5 C lower than the GOES temperatures. The ATI for excessively-drained to well-drained mineral soils was greater than for drained organic soils possibly because of long periods of low rainfall during late 1980 and early 1981. Organic soils cropped to sugar cane showed lower ATI after a severe killing freeze. With dead leaves, there was less transpiration and more solar radiation probably reached the dark soil surface. This would explain the larger diurnal temperature amplitude observed
    corecore