773 research outputs found

    How Sound Are Our Ultralight Axion Approximations?

    Get PDF
    Ultralight axions (ULAs) are a promising dark-matter candidate. ULAs may have implications for small-scale challenges to the ΛCDM model and arise in string scenarios. ULAs are already constrained by cosmic microwave background (CMB) experiments and large-scale structure surveys, and will be probed with much greater sensitivity by future efforts. It is challenging to compute observables in ULA scenarios with sufficient speed and accuracy for cosmological data analysis because the ULA field oscillates rapidly. In past work, an effective fluid approximation has been used to make these computations feasible. Here this approximation is tested against an exact solution of the ULA equations, comparing the induced error of CMB observables with the sensitivity of current and future experiments. In the most constrained mass range for a ULA dark-matter component (10−27  eV≤max≤10−25  eV), the induced bias on the allowed ULA fraction of dark matter from Planck data is less than 1σ. In the cosmic-variance limit (including temperature and polarization data), the bias is ≲2σ for primary CMB anisotropies, with more severe biases (as high as ∼4σ) resulting for less reliable versions of the effective fluid approximation. If all of the standard cosmological parameters are fixed by other measurements, the expected bias rises to 4−20σ (well beyond the validity of the Fisher approximation), though the required level of degeneracy breaking will not be achieved by any planned surveys

    Cosmological Implications Of Ultralight Axionlike Fields

    Get PDF
    Cosmological observations are used to test for imprints of an ultralight axionlike field (ULA), with a range of potentials V(ϕ)∝[1−cos(ϕ/f)]ⁿ set by the axion-field value ϕ and decay constant f. Scalar field dynamics dictate that the field is initially frozen and then begins to oscillate around its minimum when the Hubble parameter drops below some critical value. For n=1, once dynamical, the axion energy density dilutes as matter; for n=2 it dilutes as radiation and for n=3 it dilutes faster than radiation. Both the homogeneous evolution of the ULA and the dynamics of its linear perturbations are included, using an effective fluid approximation generalized from the usual n=1 case. ULA models are parametrized by the redshift z(c) when the field becomes dynamical, the fractional energy density f(z(c))≡Ωₐ(z(c))/Ωₜₒₜ(z(c)) in the axion field at zc, and the effective sound speed c²ₛ. Using Planck, BAO and JLA data, constraints on fzc are obtained. ULAs are degenerate with dark energy for all three potentials if 1+z(c)≲10. When 3×10⁴≳1+z(c)≳10, f(z(c)) is constrained to be ≲0.004 for n=1 and f(z(c))≲0.02 for the other two potentials. The constraints then relax with increasing zc. These results have implications for ULAs as a resolution to cosmological tensions, such as discrepant measurements of the Hubble constant, or the EDGES measurement of the global 21 cm signal

    Probing Spatial Variation Of The Fine-Structure Constant Using The CMB

    Get PDF
    The fine-structure constant, α, controls the strength of the electromagnetic interaction. There are extensions of the standard model in which α is dynamical on cosmological length and time scales. The physics of the cosmic microwave background (CMB) depends on the value of α. The effects of spatial variation in α on the CMB are similar to those produced by weak lensing: smoothing of the power spectrum, and generation of non-Gaussian features. These would induce a bias to estimates of the weak-lensing potential power spectrum of the CMB. Using this effect, Planck measurements of the temperature and polarization power spectrum, as well as estimates of CMB lensing, are used to place limits (95% C.L.) on the amplitude of a scale-invariant angular power spectrum of α fluctuations relative to the mean value (CαL=AαSI/[L(L+1)]) of AαSI≤1.6×10−5. The limits depend on the assumed shape of the α-fluctuation power spectrum. For example, for a white-noise angular power spectrum (CαL=AαWN), the limit is AαWN≤2.3×10−8. It is found that the response of the CMB to α fluctuations depends on a separate-universe approximation, such that theoretical predictions are only reliable for α multipoles with L≲100. An optimal trispectrum estimator can be constructed and it is found that it is only marginally more sensitive than lensing techniques for Planck but significantly more sensitive when considering the next generation of experiments. For a future CMB experiment with cosmic-variance limited polarization sensitivity (e.g., CMB-S4), the optimal estimator could detect α fluctuations with AαSI\u3e1.9×10−6 and AαWN\u3e1.4×10−9

    Search for Compensated Isocurvature Perturbations with Planck Power Spectra

    Full text link
    In the standard inflationary scenario, primordial perturbations are adiabatic. The amplitudes of most types of isocurvature perturbations are generally constrained by current data to be small. If, however, there is a baryon-density perturbation that is compensated by a dark-matter perturbation in such a way that the total matter density is unperturbed, then this compensated isocurvature perturbation (CIP) has no observable consequence in the cosmic microwave background (CMB) at linear order in the CIP amplitude. Here we search for the effects of CIPs on CMB power spectra to quadratic order in the CIP amplitude. An analysis of the Planck temperature data leads to an upper bound Δrms27.1×103\Delta_{\rm rms}^2 \leq 7.1\times 10^{-3}, at the 68\% confidence level, to the variance Δrms2\Delta_{\rm rms}^2 of the CIP amplitude. This is then strengthened to Δrms25.0×103\Delta_{\rm rms}^2\leq 5.0\times 10^{-3} if Planck small-angle polarization data are included. A cosmic-variance-limited CMB experiment could improve the 1σ1\sigma sensitivity to CIPs to Δrms29×104\Delta^2_{\rm rms} \lesssim 9\times 10^{-4}. It is also found that adding CIPs to the standard Λ\LambdaCDM model can improve the fit of the observed smoothing of CMB acoustic peaks just as much as adding a non-standard lensing amplitude.Comment: 9 Pages, 3 Tables, 6 Figures. Accepted in PR

    Baryons Still Trace Dark Matter: Probing CMB Lensing Maps For Hidden Isocurvature

    Get PDF
    Compensated isocurvature perturbations (CIPs) are primordial fluctuations that balance baryon and dark-matter isocurvature to leave the total matter density unperturbed. The effects of CIPs on the cosmic microwave background (CMB) anisotropies are similar to those produced by weak lensing of the CMB: smoothing of the power spectrum and generation of non-Gaussian features. Here, an entirely new CIP contribution to the standard estimator for the lensing-potential power spectrum is derived. Planck measurements of the temperature and polarization power spectrum, as well as estimates of CMB lensing, are used to place limits on the variance of the CIP fluctuations on CMB scales, Δ2rms(RCMB). The resulting constraint of Δ2rms(RCMB)\u3c4.3×10−3 at 95% confidence level (CL) using this new technique improves on past work by a factor of ∼3. We find that for Planck data our constraints almost reach the sensitivity of the optimal CIP estimator. The method presented here is currently the most sensitive probe of the amplitude of a scale-invariant CIP power spectrum, ACIP, placing an upper limit of ACIP\u3c0.017 at 95% CL. Future measurements of the large-scale CMB lensing-potential power spectrum could probe CIP amplitudes as low as Δ2rms(RCMB)=8×10−5 at 95% CL (corresponding to ACIP=3.2×10−4)

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.

    GCView: the genomic context viewer for protein homology searches

    Get PDF
    Genomic neighborhood can provide important insights into evolution and function of a protein or gene. When looking at operons, changes in operon structure and composition can only be revealed by looking at the operon as a whole. To facilitate the analysis of the genomic context of a query in multiple organisms we have developed Genomic Context Viewer (GCView). GCView accepts results from one or multiple protein homology searches such as BLASTp as input. For each hit, the neighboring protein-coding genes are extracted, the regions of homology are labeled for each input and the results are presented as a clear, interactive graphical output. It is also possible to add more searches to iteratively refine the output. GCView groups outputs by the hits for different proteins. This allows for easy comparison of different operon compositions and structures. The tool is embedded in the framework of the Bioinformatics Toolkit of the Max-Planck Institute for Developmental Biology (MPI Toolkit). Job results from the homology search tools inside the MPI Toolkit can be forwarded to GCView and results can be subsequently analyzed by sequence analysis tools. Results are stored online, allowing for later reinspection. GCView is freely available at http://toolkit.tuebingen.mpg.de/gcview

    Structural investigations of CeIrIn5{_5} and CeCoIn5{_5} on macroscopic and atomic length scales

    Full text link
    For any thorough investigation of complex physical properties, as encountered in strongly correlated electron systems, not only single crystals of highest quality but also a detailed knowledge of the structural properties of the material are pivotal prerequisites. Here, we combine physical and chemical investigations on the prototypical heavy fermion superconductors CeIrIn5{_5} and CeCoIn5{_5} on atomic and macroscopic length scale to gain insight into their precise structural properties. Our approach spans from enhanced resolution X-ray diffraction experiments to atomic resolution by means of Scanning Tunneling Microscopy (STM) and reveal a certain type of local features (coexistence of minority and majority structural patterns) in the tetragonal HoCoGa5_5-type structure of both compounds.Comment: 8 pages, 5 figures, submitted to JPSJ (SCES 2013

    What Influences the Diffusion of Grassroots Innovations for Sustainability? Investigating Community Currency Niches

    Get PDF
    Community action for sustainability is a promising site of socio-technical innovation. Here we test the applicability of co-evolutionary niche theories of innovation diffusion (Strategic Niche Management, SNM) to the context of ‘grassroots innovations’. We present new empirical findings from an international study of 12 community currency niches (such as LETS, time banks, local currencies). These are parallel systems of exchange, designed to operate alongside mainstream money, meeting additional sustainability needs. Our findings confirm SNM predictions that niche-level activity correlates with diffusion success, but we highlight additional or confounding factors, and how niche theories might be adapted to better fit civil-society innovations. In so doing, we develop a model of grassroots innovation niche diffusion which builds on existing work and tailors it to this specific context. The paper concludes with a series of theoretically-informed recommendations for practitioners and policymakers to support the development and potential of grassroots innovations
    corecore