263 research outputs found

    An intermediate state between the kagome-ice and the fully polarized state in Dy2_2Ti2_2O7_7

    Get PDF
    Dy2_2Ti2_2O7_7 is at present the cleanest example of a spin-ice material. Previous theoretical and experimental work on the first-order transition between the kagome-ice and the fully polarized state has been taken as a validation for the dipolar spin-ice model. Here we investigate in further depth this phase transition using ac-susceptibility and dc-magnetization, and compare this results with Monte-Carlo simulations and previous magnetization and specific heat measurements. We find signatures of an intermediate state between the kagome-ice and full polarization. This signatures are absent in current theoretical models used to describe spin-ice materials.Comment: 7 pages, 4 figure

    Dynamic relaxation of a liquid cavity under amorphous boundary conditions

    Get PDF
    The growth of cooperatively rearranging regions was invoked long ago by Adam and Gibbs to explain the slowing down of glass-forming liquids. The lack of knowledge about the nature of the growing order, though, complicates the definition of an appropriate correlation function. One option is the point-to-set correlation function, which measures the spatial span of the influence of amorphous boundary conditions on a confined system. By using a swap Monte Carlo algorithm we measure the equilibration time of a liquid droplet bounded by amorphous boundary conditions in a model glass-former at low temperature, and we show that the cavity relaxation time increases with the size of the droplet, saturating to the bulk value when the droplet outgrows the point-to-set correlation length. This fact supports the idea that the point-to-set correlation length is the natural size of the cooperatively rearranging regions. On the other hand, the cavity relaxation time computed by a standard, nonswap dynamics, has the opposite behavior, showing a very steep increase when the cavity size is decreased. We try to reconcile this difference by discussing the possible hybridization between MCT and activated processes, and by introducing a new kind of amorphous boundary conditions, inspired by the concept of frozen external state as an alternative to the commonly used frozen external configuration.Comment: Completely rewritten version. After the first submission it was realized that swap and nonswap dynamics results are qualitatively different. This version reports the results of both dynamics and discusses the different behaviors. 17 pages, 18 figure

    High temperature onset of field-induced transitions in the spin-ice compound Dy2Ti2O7

    Get PDF
    We have studied the field-dependent ac magnetic susceptibility of single crystals of Dy2Ti2O7 spin ice along the [111] direction in the temperature range 1.8 K - 7 K. Our data reflect the onset of local spin ice order in the appearance of different field regimes. In particular, we observe a prominent feature at approximately 1.0 T that is a precursor of the low-temperature metamagnetic transition out of field-induced kagome ice, below which the kinetic constraints imposed by the ice rules manifest themselves in a substantial frequency-dependence of the susceptibility. Despite the relatively high temperatures, our results are consistent with a monopole picture, and they demonstrate that such a picture can give physical insight to the spin ice systems even outside the low-temperature, low-density limit where monopole excitations are well-defined quasiparticles

    Numerical simulations of liquids with amorphous boundary conditions

    Full text link
    It has recently become clear that simulations under amorphpous boundary conditions (ABCs) can provide valuable information on the dynamics and thermodynamics of disordered systems with no obvious ordered parameter. In particular, they allow to detect a correlation length that is not measurable with standard correlation functions. Here we explain what exactly is meant by ABCs, discuss their relation with point-to-set correlations and briefly describe some recent results obtained with this technique.Comment: Presented at STATPHYS 2

    Rigid-Band Shift of the Fermi Level in a Strongly Correlated Metal: Sr(2-y)La(y)RuO(4)

    Full text link
    We report a systematic study of electron doping of Sr2RuO4 by non-isovalent substitution of La^(3+) for Sr^(2+). Using a combination of de Haas-van Alphen oscillations, specific heat, and resistivity measurements, we show that electron doping leads to a rigid-band shift of the Fermi level corresponding to one doped electron per La ion, with constant many-body quasiparticle mass enhancement over the band mass. The susceptibility spectrum is substantially altered and enhanced by the doping but this has surprisingly little effect on the strength of the unconventional superconducting pairing.Comment: 4 pages, 3 figure

    Anderson Localization in Euclidean Random Matrices

    Get PDF
    We study spectra and localization properties of Euclidean random matrices. The problem is approximately mapped onto that of a matrix defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold. We solve numerically an exact equation for the probability distribution function of the diagonal element of the the resolvent matrix, with a population dynamics algorithm, and we show how this can be used to find the localization threshold. An application of the method in the context of the Instantaneous Normal Modes of a liquid system is given.Comment: 4 page

    Metamagnetic Quantum Criticality

    Full text link
    A renormalization group treatment of metamagnetic quantum criticality in metals is presented. In clean systems the universality class is found to be of the overdamped, conserving (dynamical exponent z=3) Ising type. Detailed results are obtained for the field and temperature dependence of physical quantities including the differential susceptibility, resistivity and specific heat near the transition. An application of the theory is made to Sr3Ru2O7, which appears to exhibit a metamagnetic critical end-point at a very low temperature and a field of order 5-7T.Comment: 4 pages latex (Revtex 4) and 3 eps figure

    Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure

    Get PDF
    Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system.Fil: Samarakoon, Anjana. Oak Ridge National Laboratory; Estados Unidos. Argonne National Laboratory; Estados UnidosFil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados UnidosFil: Ye, Feng. Oak Ridge National Laboratory; Estados UnidosFil: Zhang, Qiang. Oak Ridge National Laboratory; Estados UnidosFil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentin
    • …
    corecore