110 research outputs found
Modified NASA-Lewis chemical equilibrium code for MHD applications
A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view
Weak exponential stability for time-periodic differential inclusions via first approximation averaging
Published online: 20 June 2012In this work we propose a method to study a weak exponential stability
for time-varying differential inclusions applying an averaging procedure to a first
approximation. Namely, we show that a weak exponential stability of the averaged
first approximation to the differential inclusion implies the weak exponential stability
of the original time-varying inclusion. The result is illustrated by an example.FC
Use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems
We show that necessary and sufficient conditions of optimality in periodic
optimization problems can be stated in terms of a solution of the corresponding
HJB inequality, the latter being equivalent to a max-min type variational
problem considered on the space of continuously differentiable functions. We
approximate the latter with a maximin problem on a finite dimensional subspace
of the space of continuously differentiable functions and show that a solution
of this problem (existing under natural controllability conditions) can be used
for construction of near optimal controls. We illustrate the construction with
a numerical example.Comment: 29 pages, 2 figure
Testing TIP Open Source Solutions in Deployed Optical Networks
Standardization in optical networking enables operators to benefit from using open source components. We investigate quality of transmission of open source hard- and software in the Deutsche Telekom RandD SASER network and optimize the working point
Modeling the electron transport chain of purple non-sulfur bacteria
Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well-known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces well-known phenomena of respiratory and photosynthetic operation of the ETC and also provides non-intuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high-light to low-light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression
Evaluating Process Quality Based on Change Request Data – An Empirical Study of the Eclipse Project
Abstract. The information routinely collected in change request management systems contains valuable information for monitoring of the process quality. However this data is currently utilized in a very limited way. This paper presents an empirical study of the process quality in the product portfolio of the Eclipse project. It is based on a systematic approach for the evaluation of process quality characteristics using change request data. Results of the study offer insights into the development process of Eclipse. Moreover the study allows assessing applicability and limitations of the proposed approach for the evaluation of process quality
The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov
BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T))
Contrast enhancement pattern predicts poor survival for patients with non-WNT/SHH medulloblastoma tumours
The Stochastic Boolean Function Evaluation problem for symmetric Boolean functions
We give two approximation algorithms solving the Stochastic Boolean Function Evaluation (SBFE) problem for symmetric Boolean functions. The first is an O(logn)-approximation algorithm, based on the submodular goal-value approach of Deshpande, Hellerstein and Kletenik. Our second algorithm, which is simple, is based on the algorithm solving the SBFE problem for k-of-n functions, due to Salloum, Breuer, and Ben-Dov. It achieves a (B−1) approximation factor, where B is the number of blocks of 0’s and 1’s in the standard vector representation of the symmetric Boolean function. As part of the design of the first algorithm, we prove that the goal value of any symmetric Boolean function is less than n(n+1)/2. Finally, we give an example showing that for symmetric Boolean functions, minimum expected verification cost and minimum expected evaluation cost are not necessarily equal. This contrasts with a previous result, given by Das, Jafarpour, Orlitsky, Pan and Suresh, which showed that equality holds in the unit-cost case. © 2021 Elsevier B.V
- …
