2,404 research outputs found
Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model
A discrete model is introduced to account for the time-periodic oscillations
of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40
period AlAs/GaAs superlattice. Basic ingredients are an effective negative
differential resistance due to the sequential resonant tunneling of the
photoexcited carriers through the potential barriers, and a rate equation for
the holes that incorporates photogeneration and recombination. The
photoexciting laser acts as a damping factor ending the oscillations when its
power is large enough. The model explains: (i) the known oscillatory static I-V
characteristic curve through the formation of a domain wall connecting high and
low electric field domains, and (ii) the photocurrent and photoluminescence
time-dependent oscillations after the domain wall is formed. In our model, they
arise from the combined motion of the wall and the shift of the values of the
electric field at the domains. Up to a certain value of the photoexcitation,
the non-uniform field profile with two domains turns out to be metastable:
after the photocurrent oscillations have ceased, the field profile slowly
relaxes toward the uniform stationary solution (which is reached on a much
longer time scale). Multiple stability of stationary states and hysteresis are
also found. An interpretation of the oscillations in the photoluminescence
spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9
Electromagnetic multipole theory for optical nanomaterials
Optical properties of natural or designed materials are determined by the
electromagnetic multipole moments that light can excite in the constituent
particles. In this work we present an approach to calculate the multipole
excitations in arbitrary arrays of nanoscatterers in a dielectric host medium.
We introduce a simple and illustrative multipole decomposition of the electric
currents excited in the scatterers and link this decomposition to the classical
multipole expansion of the scattered field. In particular, we find that
completely different multipoles can produce identical scattered fields. The
presented multipole theory can be used as a basis for the design and
characterization of optical nanomaterials
Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation times in semiconductor superlattices
A stochastic discrete drift-diffusion model is proposed to account for the
effects of shot noise in weakly coupled, highly doped semiconductor
superlattices. Their current-voltage characteristics consist of a number stable
multistable branches corresponding to electric field profiles displaying two
domains separated by a domain wall. If the initial state corresponds to a
voltage on the middle of a stable branch and a sudden voltage is switched so
that the final voltage corresponds to the next branch, the domains relocate
after a certain delay time. Shot noise causes the distribution of delay times
to change from a Gaussian to a first passage time distribution as the final
voltage approaches that of the end of the first current branch. These results
agree qualitatively with experiments by Rogozia {\it et al} (Phys. Rev. B {\bf
64}, 041308(R) (2001)).Comment: 9 pages, 12 figures, 2 column forma
Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices
We review the occurrence of electric-field domains in doped superlattices
within a discrete drift model. A complete analysis of the construction and
stability of stationary field profiles having two domains is carried out. As a
consequence, we can provide a simple analytical estimation for the doping
density above which stable stable domains occur. This bound may be useful for
the design of superlattices exhibiting self-sustained current oscillations.
Furthermore we explain why stable domains occur in superlattices in contrast to
the usual Gunn diode.Comment: Tex file and 3 postscript figure
A compact, continuous wave terahertz source for spectroscopy and imaging based on a quantum cascade laser
Chaos in resonant-tunneling superlattices
Spatio-temporal chaos is predicted to occur in n-doped semiconductor
superlattices with sequential resonant tunneling as their main charge transport
mechanism. Under dc voltage bias, undamped time-dependent oscillations of the
current (due to the motion and recycling of electric field domain walls) have
been observed in recent experiments. Chaos is the result of forcing this
natural oscillation by means of an appropriate external microwave signal.Comment: 3 pages, LaTex, RevTex, 3 uuencoded figures (1.2M) are available upon
request from [email protected], to appear in Phys.Rev.
Quasiperiodic time dependent current in driven superlattices: distorted Poincare maps and strange attractors
Intriguing routes to chaos have been experimentally observed in semiconductor
superlattices driven by an ac field. In this work, a theoretical model of time
dependent transport in ac driven superlattices is numerically solved. In
agreement with experiments, distorted Poincare maps in the quasiperiodic regime
are found. They indicate the appearance of very complex attractors and routes
to chaos as the amplitude of the AC signal increases. Distorted maps are caused
by the discrete well-to-well jump motion of a domain wall during spiky
high-frequency self-sustained oscillations of the current.Comment: 10 pages, 4 figure
Recommended from our members
Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis.
Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. Herein, we describe the surgical and intraoperative electrophysiological approach used, followed by initial EES-enabled results observed in 2 human subjects with motor complete paralysis who were enrolled in a clinical trial investigating the use of EES to enable motor functions after SCI. The 16-contact electrode array was initially positioned under fluoroscopic guidance. Then, EES-evoked motor responses were recorded from select leg muscles and displayed in real time to determine electrode array proximity to spinal cord regions associated with motor activity of the lower extremities. Acceptable array positioning was determined based on achievement of selective proximal or distal leg muscle activity, as well as bilateral muscle activation. Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI
Chaotic dynamics of electric-field domains in periodically driven superlattices
Self-sustained time-dependent current oscillations under dc voltage bias have
been observed in recent experiments on n-doped semiconductor superlattices with
sequential resonant tunneling. The current oscillations are caused by the
motion and recycling of the domain wall separating low- and high-electric-
field regions of the superlattice, as the analysis of a discrete drift model
shows and experimental evidence supports. Numerical simulation shows that
different nonlinear dynamical regimes of the domain wall appear when an
external microwave signal is superimposed on the dc bias and its driving
frequency and driving amplitude vary. On the frequency - amplitude parameter
plane, there are regions of entrainment and quasiperiodicity forming Arnol'd
tongues. Chaos is demonstrated to appear at the boundaries of the tongues and
in the regions where they overlap. Coexistence of up to four electric-field
domains randomly nucleated in space is detected under ac+dc driving.Comment: 9 pages, LaTex, RevTex. 12 uuencoded figures (1.8M) should be
requested by e-mail from the autho
- …
