40 research outputs found
Neurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage
Considerations about ocular neoplasia of dogs and cats
Primary and secondary neoplasia of dogs and cats may assume several different forms. Clinical signs are varied, and are manifest in accordance with the diseased tissue. The present article aims to review clinical and pathophysiologic aspects of frequent neoplasms that affect by the eye and the adnexal ocular structures of dogs and cats
In situ analysis of proteolipid protein gene transcripts during persistent Theiler's virus infection.
SJL/J mice inoculated intracranially with the DA strain of Theiler's virus exhibit a persistent demyelinating disease of the central nervous system. To investigate the effect of persistent infection of oligodendrocytes on the expression of myelin genes, we analyzed the level of PLP mRNA in infected as well as uninfected oligodendrocytes. This study was performed at the single-cell level using the simultaneous detection of viral antigens by immunocytochemistry and PLP mRNAs by in situ hybridization with 35S-labeled oligonucleotide probes. Our data indicate that viral infection of oligodendrocytes reduces the level of PLP mRNA by about 80%. </jats:p
Simultaneous in situ detection of two mRNAs in the same cell using riboprobes labeled with biotin and 35S.
We used 35S-labeled and biotinylated cRNAs (riboprobes) to detect simultaneously two different mRNAs by in situ hybridization. In a first step we established the conditions under which each type of probe achieved the same high level of sensitivity. We then used these conditions to hybridize BHK cells infected with Theiler's virus, a murine picornavirus, with a mixture of a virus-specific biotinylated riboprobe and a 35S-labeled riboprobe specific for beta-actin mRNA. Both mRNAs could be detected in the same cell, although the sensitivity achieved by the radiolabeled probe was reduced by about 40% by the simultaneous hybridization with the biotinylated probe. </jats:p
Characterization of Borna disease virus p56 protein, a surface glycoprotein involved in virus entry
Borna disease virus (BDV) is a nonsegmented negative-stranded (NNS) RNA virus, prototype of a new taxon in the Mononegavirales order. BDV causes neurologic disease manifested by behavioral abnormalities in several animal species, and evidence suggests that it may be a human pathogen. To improve our knowledge about the biology of this novel virus, we have identified and characterized the product of BDV open reading frame IV (BVp56). Based on sequence features, BVp56 encodes a virus surface glycoprotein. Glycoproteins play essential roles in the biology of NNS RNA viruses. Expression of BVp56 resulted in the generation of two polypeptides with molecular masses of about 84 and 43 kDa (GP-84 and GP-43). GP-84 and GP-43 likely correspond to the full-length BVp56 gene and to its C terminus, respectively. Endoglycosidase studies demonstrated that both products were glycosylated and that this process was required for the stabilization of newly synthesized products. Moreover, our results suggested that GP-43 is generated by cleavage of GP-84 by a cellular protease. Subcellular localization studies demonstrated that GP-84 accumulates in the ER, whereas GP-43 reaches the cell surface. Both BVp56 products were found to be associated with infectious virions, and antibodies to BVp56 had neutralizing activity. Our findings suggest that BVp56 exhibits a novel form of processing for an animal NNS RNA virus surface glycoprotein, which might influence the assembly and budding of BDV.</jats:p
