15,175 research outputs found

    Detectors and Concepts for sub-100 ps timing with gaseous detectors

    Full text link
    We give a short compendium of the main ongoing detectors and concepts capable of performing accurate sub-100 ps timing at high particle fluxes and on large areas, through technologies based on gaseous media. We briefly discuss the state-of-the-art, technological limitations and prospects, and a new bizarre idea

    Gaseous and dual-phase time projection chambers for imaging rare processes

    Full text link
    Modern approaches to the detection and imaging of rare particle interactions through gaseous and dual-phase time projection chambers are discussed. We introduce and examine their basic working principles and enabling technological assets.Comment: Version accepted in NIM after small modifications. Quality of figures slightly reduced in pre-print due to arXiv restrictions on file siz

    Effective pore size and radius of capture for K+ ions in K-channels

    Get PDF
    Indexación: Web of Science; Scopus.Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structurss. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 angstrom and r(E) = 4.5-5.2 angstrom, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 angstrom) and the Shaker K-v-channel (r(C) = 0.8 angstrom), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 angstrom and 3.6-4.4 angstrom for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.http://recursosbiblioteca.unab.cl:2226/articles/srep1989

    The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2

    Full text link
    This study of SDSS0804 is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography. Observations were carried out during 2008-2009, after the object's magnitude decreased to V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min periodicity, which is half of the orbital period of the system. In Sept. 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-humps, but with a significantly smaller ~0.01mag amplitude. Other types of variability like a "mini-outburst" or SDSS1238-like features were not detected. Doppler tomograms, obtained from spectroscopic data during the same period of time, show a large accretion disk with uneven brightness, implying the presence of spiral waves. We constructed a geometric model of a bounce-back system containing two spiral density waves in the outer annuli of the disk to reproduce the observed light curves. The Doppler tomograms and the double-hump-shape light curves in quiescence can be explained by a model system containing a massive >0.7Msun white dwarf with a surface temperature of ~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli spirals. According to this model, the accretion disk should be large, extending to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&

    A comprehensive study of rate capability in Multi-Wire Proportional Chambers

    Full text link
    Systematic measurements on the rate capability of thin MWPCs operated in Xenon, Argon and Neon mixtures using CO2 as UV-quencher are presented. A good agreement between data and existing models has been found, allowing us to present the rate capability of MWPCs in a comprehensive way and ultimately connect it with the mobilities of the drifting ions.Comment: 29 pages, 18 figure

    Using membrane computing for obtaining homology groups of binary 2D digital images

    Get PDF
    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    The Nuclear and Circum-nuclear Stellar Population in Seyfert 2 Galaxies: Implications for the Starburst-AGN Connection

    Get PDF
    We report the results of a spectroscopic investigation of a sample of 20 of the brightest type 2 Seyfert nuclei. Our goal is to search for the direct spectroscopic signature of massive stars, and thereby probe the role of circumnuclear starbursts in the Seyfert phenomenon. The method used is based on the detection of the higher order Balmer lines and HeI lines in absorption and the Wolf-Rayet feature at \sim4680 \AA in emission. These lines are strong indicators of the presence of young (a few Myrs) and intermediate-age (a few 100 Myrs) stellar populations. In over half the sample, we have detected HeI and/or strong stellar absorption features in the high-order (near-UV) Balmer series together with relatively weak lines from an old stellar population. In three others we detect a broad emission feature near 4680 \AA that is most plausibly ascribed to a population of Wolf-Rayet stars (the evolved descendants of the most massive stars). We therefore conclude that the blue and near-UV light of over half of the sample is dominated by young and/or intermediate age stars. The ``young'' Seyfert 2's have have larger far-IR luminosities, cooler mid/far-IR colors, and smaller [OIII]/Hβ\beta flux ratios than the ``old'' ones. These differences are consistent with a starburst playing a significant energetic role in the former class. We consider the possibility that there may be two distinct sub-classes of Seyfert 2 nuclei (``starbursts'' and ``hidden BLR''). However, the fact that hidden BLRs have been found in three of the ``young'' nuclei argues against this, and suggests that nuclear starbursts may be a more general part of the Seyfert phenomenon.Comment: To be published in ApJ, 546, Jan 10, 200

    Performances of multi-gap timing RPCs for relativistic ions in the range Z=1-6

    Full text link
    We present the performance of Multi-gap timing RPCs under irradiation by fully stripped relativistic ions (gamma*beta=2.7, Z=1-6). A time resolution of 80 ps at high efficiency has been obtained by just using standard `off the shelf' 4-gap timing RPCs from the new HADES ToF wall. The resolution worsened to 100 ps for ~ 1 kHz/cm2 proton flux and for ~ 100 Hz/cm2 Carbon flux. The chambers were operated at a standard field of E=100 kV/cm and showed a high stability during the experiment, supporting the fact that RPCs are a convenient choice when accommodating a very broad range of ionizing particles is needed. The data provides insight in the region of very highly ionizing particles (up to x 36 mips) and can be used to constrain the existing avalanche and Space-Charge models far from the usual `mip valley'. The implications of these results for the general case of detection based on secondary processes (n, gamma) resulting in highly ionizing particles with characteristic energy distributions will be discussed, together with the nature of the time-charge correlation curve.Comment: 31 pages, 19 figures, submitted to JINS
    corecore