15,175 research outputs found
Detectors and Concepts for sub-100 ps timing with gaseous detectors
We give a short compendium of the main ongoing detectors and concepts capable
of performing accurate sub-100 ps timing at high particle fluxes and on large
areas, through technologies based on gaseous media. We briefly discuss the
state-of-the-art, technological limitations and prospects, and a new bizarre
idea
Gaseous and dual-phase time projection chambers for imaging rare processes
Modern approaches to the detection and imaging of rare particle interactions
through gaseous and dual-phase time projection chambers are discussed. We
introduce and examine their basic working principles and enabling technological
assets.Comment: Version accepted in NIM after small modifications. Quality of figures
slightly reduced in pre-print due to arXiv restrictions on file siz
Effective pore size and radius of capture for K+ ions in K-channels
Indexación: Web of Science; Scopus.Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structurss. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 angstrom and r(E) = 4.5-5.2 angstrom, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 angstrom) and the Shaker K-v-channel (r(C) = 0.8 angstrom), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 angstrom and 3.6-4.4 angstrom for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.http://recursosbiblioteca.unab.cl:2226/articles/srep1989
The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2
This study of SDSS0804 is primarily concerned with the double-hump shape in
the light curve and its connection with the accretion disk in this bounce-back
system. Time-resolved photometric and spectroscopic observations were obtained
to analyze the behavior of the system between superoutbursts. A geometric model
of a binary system containing a disk with two outer annuli spiral density waves
was applied to explain the light curve and the Doppler tomography. Observations
were carried out during 2008-2009, after the object's magnitude decreased to
V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a
sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min
periodicity, which is half of the orbital period of the system. In Sept. 2010,
the system underwent yet another superoutburst and returned to its quiescent
level by the beginning of 2012. This light curve once again showed a
double-humps, but with a significantly smaller ~0.01mag amplitude. Other types
of variability like a "mini-outburst" or SDSS1238-like features were not
detected. Doppler tomograms, obtained from spectroscopic data during the same
period of time, show a large accretion disk with uneven brightness, implying
the presence of spiral waves. We constructed a geometric model of a bounce-back
system containing two spiral density waves in the outer annuli of the disk to
reproduce the observed light curves. The Doppler tomograms and the
double-hump-shape light curves in quiescence can be explained by a model system
containing a massive >0.7Msun white dwarf with a surface temperature of
~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli
spirals. According to this model, the accretion disk should be large, extending
to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk
should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&
A comprehensive study of rate capability in Multi-Wire Proportional Chambers
Systematic measurements on the rate capability of thin MWPCs operated in
Xenon, Argon and Neon mixtures using CO2 as UV-quencher are presented. A good
agreement between data and existing models has been found, allowing us to
present the rate capability of MWPCs in a comprehensive way and ultimately
connect it with the mobilities of the drifting ions.Comment: 29 pages, 18 figure
Using membrane computing for obtaining homology groups of binary 2D digital images
Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor
Effects of High Charge Densities in Multi-GEM Detectors
A comprehensive study, supported by systematic measurements and numerical
computations, of the intrinsic limits of multi-GEM detectors when exposed to
very high particle fluxes or operated at very large gains is presented. The
observed variations of the gain, of the ion back-flow, and of the pulse height
spectra are explained in terms of the effects of the spatial distribution of
positive ions and their movement throughout the amplification structure. The
intrinsic dynamic character of the processes involved imposes the use of a
non-standard simulation tool for the interpretation of the measurements.
Computations done with a Finite Element Analysis software reproduce the
observed behaviour of the detector. The impact of this detailed description of
the detector in extreme conditions is multiple: it clarifies some detector
behaviours already observed, it helps in defining intrinsic limits of the GEM
technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu
The Nuclear and Circum-nuclear Stellar Population in Seyfert 2 Galaxies: Implications for the Starburst-AGN Connection
We report the results of a spectroscopic investigation of a sample of 20 of
the brightest type 2 Seyfert nuclei. Our goal is to search for the direct
spectroscopic signature of massive stars, and thereby probe the role of
circumnuclear starbursts in the Seyfert phenomenon. The method used is based on
the detection of the higher order Balmer lines and HeI lines in absorption and
the Wolf-Rayet feature at 4680 \AA in emission. These lines are strong
indicators of the presence of young (a few Myrs) and intermediate-age (a few
100 Myrs) stellar populations. In over half the sample, we have detected HeI
and/or strong stellar absorption features in the high-order (near-UV) Balmer
series together with relatively weak lines from an old stellar population. In
three others we detect a broad emission feature near 4680 \AA that is most
plausibly ascribed to a population of Wolf-Rayet stars (the evolved descendants
of the most massive stars). We therefore conclude that the blue and near-UV
light of over half of the sample is dominated by young and/or intermediate age
stars. The ``young'' Seyfert 2's have have larger far-IR luminosities, cooler
mid/far-IR colors, and smaller [OIII]/H flux ratios than the ``old''
ones. These differences are consistent with a starburst playing a significant
energetic role in the former class. We consider the possibility that there may
be two distinct sub-classes of Seyfert 2 nuclei (``starbursts'' and ``hidden
BLR''). However, the fact that hidden BLRs have been found in three of the
``young'' nuclei argues against this, and suggests that nuclear starbursts may
be a more general part of the Seyfert phenomenon.Comment: To be published in ApJ, 546, Jan 10, 200
Performances of multi-gap timing RPCs for relativistic ions in the range Z=1-6
We present the performance of Multi-gap timing RPCs under irradiation by
fully stripped relativistic ions (gamma*beta=2.7, Z=1-6). A time resolution of
80 ps at high efficiency has been obtained by just using standard `off the
shelf' 4-gap timing RPCs from the new HADES ToF wall. The resolution worsened
to 100 ps for ~ 1 kHz/cm2 proton flux and for ~ 100 Hz/cm2 Carbon flux. The
chambers were operated at a standard field of E=100 kV/cm and showed a high
stability during the experiment, supporting the fact that RPCs are a convenient
choice when accommodating a very broad range of ionizing particles is needed.
The data provides insight in the region of very highly ionizing particles (up
to x 36 mips) and can be used to constrain the existing avalanche and
Space-Charge models far from the usual `mip valley'. The implications of these
results for the general case of detection based on secondary processes (n,
gamma) resulting in highly ionizing particles with characteristic energy
distributions will be discussed, together with the nature of the time-charge
correlation curve.Comment: 31 pages, 19 figures, submitted to JINS
- …
