201 research outputs found

    Stationary field-aligned MHD flows at astropauses and in astrotails. Principles of a counterflow configuration between a stellar wind and its interstellar medium wind

    Full text link
    A stellar wind passing through the reverse shock is deflected into the astrospheric tail and leaves the stellar system either as a sub-Alfvenic or as a super-Alfvenic tail flow. An example is our own heliosphere and its heliotail. We present an analytical method of calculating stationary, incompressible, and field-aligned plasma flows in the astrotail of a star. We present a recipe for constructing an astrosphere with the help of only a few parameters, like the inner Alfven Mach number and the outer Alfven Mach number, the magnetic field strength within and outside the stellar wind cavity, and the distribution of singular points of the magnetic field within these flows. Within the framework of a one-fluid approximation, it is possible to obtain solutions of the MHD equations for stationary flows from corresponding static MHD equilibria, by using noncanonical mappings of the canonical variables. The canonical variables are the Euler potentials of the magnetic field of magnetohydrostatic equilibria. Thus we start from static equilibria determined by the distribution of magnetic neutral points, and assume that the Alfven Mach number for the corresponding stationary equilibria is finite. The topological structure determines the geometrical structure of the interstellar gas - stellar wind interface. Additional boundary conditions like the outer magnetic field and the jump of the magnetic field across the astropause allow determination of the noncanonical transformations. This delivers the strength of the magnetic field at every point in the astrotail region beyond the reverse shock. The mathematical technique for describing such a scenario is applied to astrospheres in general, but is also relevant for the heliosphere. It shows the restrictions of the outer and the inner magnetic field strength in comparison with the corresponding Alfven Mach numbers in the case of subalfvenic flows.Comment: 19 pages, 17 figures, accepted for publication in A&

    Magnetohydrostatic solar prominences in near-potential coronal magnetic fields

    Full text link
    We present numerical magnetohydrostatic solutions describing the gravitationally stratified, bulk equilibrium of cool, dense prominence plasma embedded in a near-potential coronal field. These solutions are calculated using the FINESSE magnetohydrodynamics equilibrium solver and describe the morphologies of magnetic field distributions in and around prominences and the cool prominence plasma that these fields support. The equilibrium condition for this class of problem is usually different in distinct subdomains, separated by free boundaries, across which solutions are matched by suitable continuity or jump conditions describing force balance. We employ our precise finite element elliptic solver to calculate solutions not accessible by previous analytical techniques with temperature or entropy prescribed as free functions of the magnetic flux function, including a range of values of the polytropic index, temperature variations mainly across magnetic field lines and photospheric field profiles sheared close to the polarity inversion line. Out of the many examples computed here, perhaps the most noteworthy is one which reproduces precisely the three-part structure often encountered in observations: a cool dense prominence within a cavity/flux rope embedded in a hot corona. The stability properties of these new equilibria, which may be relevant to solar eruptions, can be determined in the form of a full resistive MHD spectrum using a companion hyperbolic stability solver.Comment: To appear in ApJ August 200

    Double-resonant fast particle-wave interaction

    Get PDF
    In future fusion devices fast particles must be well confined in order to transfer their energy to the background plasma. Magnetohydrodynamic instabilities like Toroidal Alfv\'en Eigenmodes or core-localized modes such as Beta Induced Alfv\'en Eigenmodes and Reversed Shear Alfv\'en Eigenmodes, both driven by fast particles, can lead to significant losses. This is observed in many ASDEX Upgrade discharges. The present study applies the drift-kinetic HAGIS code with the aim of understanding the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Of particular interest is the resonant interaction of particles simultaneously with two different modes, referred to as 'double-resonance'. Various mode overlapping scenarios with different q profiles are considered. It is found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Surprisingly, no radial mode overlap is necessary for this effect. Quite the contrary is found: small radial mode distances can lead to strong nonlinear mode stabilization of a linearly dominant mode.Comment: 12 pages, 11 figures; Nuclear Fusion 52 (2012

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    Full text link
    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.Comment: 31 pages, 6 figure

    Three-dimensional stability of magnetically confined mountains on accreting neutron stars

    Full text link
    We examine the hydromagnetic stability of magnetically confined mountains, which arise when material accumulates at the magnetic poles of an accreting neutron star. We extend a previous axisymmetric stability analysis by performing three-dimensional simulations using the ideal-magnetohydrodynamic (ideal-MHD) code \textsc{zeus-mp}, investigating the role played by boundary conditions, accreted mass, stellar curvature, and (briefly) toroidal magnetic field strength. We find that axisymmetric equilibria are susceptible to the undular sub-mode of the Parker instability but are not disrupted. The line-tying boundary condition at the stellar surface is crucial in stabilizing the mountain. The nonlinear three-dimensional saturation state of the instability is characterized by a small degree of nonaxisymmetry (\la 0.1 per cent) and a mass ellipticity of ϵ∼10−5\epsilon \sim 10^{-5} for an accreted mass of Ma=10−5M⊙M_a = 10^{-5} M_\odot. Hence there is a good prospect of detecting gravitational waves from accreting millisecond pulsars with long-baseline interferometers such as Advanced LIGO. We also investigate the ideal-MHD spectrum of the system, finding that long-wavelength poloidal modes are suppressed in favour of toroidal modes in the nonaxisymmetric saturation state.Comment: accepted by MNRA

    Pressure-driven instabilities in astrophysical jets

    Full text link
    Astrophysical jets are widely believed to be self-collimated by the hoop-stress due to the azimuthal component of their magnetic field. However this implies that the magnetic field is largely dominated by its azimuthal component in the outer jet region. In the fusion context, it is well-known that such configurations are highly unstable in static columns, leading to plasma disruption. It has long been pointed out that a similar outcome may follow for MHD jets, and the reasons preventing disruption are still not elucidated, although some progress has been accomplished in the recent years. In these notes, I review the present status of this open problem for pressure-driven instabilities, one of the two major sources of ideal MHD instability in static columns (the other one being current-driven instabilities). I first discuss in a heuristic way the origin of these instabilities. Magnetic resonances and magnetic shear are introduced, and their role in pressure-driven instabilities discussed in relation to Suydam's criterion. A dispersion relation is derived for pressure-driven modes in the limit of large azimuthal magnetic fields, which gives back the two criteria derived by Kadomtsev for this instability. The growth rates of these instabilities are expected to be short in comparison with the jet propagation time. What is known about the potential stabilizing role of the axial velocity of jets is then reviewed. In particular, a nonlinear stabilization mechanism recently identified in the fusion literature is discussed. Key words: Ideal MHD: stability, pressure-driven modes; Jets: stabilityComment: 20 pages, 3 figures. Lecture given at the JETSET European school "Numerical MHD and Instabilities". To be published by Springer in the "Lectures notes in physics" serie

    Global solutions to the three-dimensional full compressible magnetohydrodynamic flows

    Full text link
    The equations of the three-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows are considered in a bounded domain. The viscosity coefficients and heat conductivity can depend on the temperature. A solution to the initial-boundary value problem is constructed through an approximation scheme and a weak convergence method. The existence of a global variational weak solution to the three-dimensional full magnetohydrodynamic equations with large data is established
    • …
    corecore