The equations of the three-dimensional viscous, compressible, and heat
conducting magnetohydrodynamic flows are considered in a bounded domain. The
viscosity coefficients and heat conductivity can depend on the temperature. A
solution to the initial-boundary value problem is constructed through an
approximation scheme and a weak convergence method. The existence of a global
variational weak solution to the three-dimensional full magnetohydrodynamic
equations with large data is established