6,812 research outputs found
Long-time behavior of MHD shell models
The long time behavior of velocity-magnetic field alignment is numerically
investigated in the framework of MHD shell model. In the stationary forced
case, the correlation parameter C displays a nontrivial behavior with long
periods of high variability which alternates with periods of almost constant C.
The temporal statistics of correlation is shown to be non Poissonian, and the
pdf of constant sign periods displays clear power law tails. The possible
relevance of the model for geomagnetic dynamo problem is discussed.Comment: 6 pages with 5 figures. In press on Europhysics Letter
Effect of model selection on combustor performance and stability predictions using ROCCID
The ROCket Combustor Interactive Design (ROCCID) methodology is an interactive computer program that combines previously developed combustion analysis models to calculate the combustion performance and stability of liquid rocket engines. Test data from 213 kN (48,000 lbf) Liquid Oxygen (LOX)/RP-1 combustor with an O-F-O (oxidizer-fuel-oxidizer) triplet injector were used to characterize the predictive capabilities of the ROCCID analysis models for this injector/propellant configuration. Thirteen combustion performance and stability models were incorporated into ROCCID, and ten of them, which have options for triplet injectors, were examined. Calculations using different combinations of analysis models, with little or no anchoring, were carried out on a test matrix of operating combinations matching those of the test program. Results of the computer analyses were compared to test data, and the ability of the model combinations to correctly predict combustion stability or instability was determined. For the best model combination(s), sensitivity of the calculations to fuel drop size and mixing efficiency was examined. Error in the stability calculations due to uncertainty in the pressure interaction index (N) was examined. The recommended model combinations for this O-F-O triplet LOX/RP-1 configuration are proposed
Universal finite size corrections and the central charge in non solvable Ising models
We investigate a non solvable two-dimensional ferromagnetic Ising model with
nearest neighbor plus weak finite range interactions of strength \lambda. We
rigorously establish one of the predictions of Conformal Field Theory (CFT),
namely the fact that at the critical temperature the finite size corrections to
the free energy are universal, in the sense that they are exactly independent
of the interaction. The corresponding central charge, defined in terms of the
coefficient of the first subleading term to the free energy, as proposed by
Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all
0<\lambda<\lambda_0 and \lambda_0 a small but finite convergence radius. This
is one of the very few cases where the predictions of CFT can be rigorously
verified starting from a microscopic non solvable statistical model. The proof
uses a combination of rigorous renormalization group methods with a novel
partition function inequality, valid for ferromagnetic interactions.Comment: 43 pages, 1 figur
Electron Correlations in Bilayer Graphene
The nature of electron correlations in bilayer graphene has been
investigated. An analytic expression for the radial distribution function is
derived for an ideal electron gas and the corresponding static structure factor
is evaluated. We also estimate the interaction energy of this system. In
particular, the functional form of the pair-correlation function was found to
be almost insensitive to the electron density in the experimentally accessible
range. The inter-layer bias potential also has a negligible effect on the
pair-correlation function. Our results offer valuable insights into the general
behavior of the correlated systems and serve as an essential starting-point for
investigation of the fully-interacting system.Comment: 4 pages, 3 figure
Theory of water and charged liquid bridges
The phenomena of liquid bridge formation due to an applied electric field is
investigated. A new solution for the charged catenary is presented which allows
to determine the static and dynamical stability conditions where charged liquid
bridges are possible. The creeping height, the bridge radius and length as well
as the shape of the bridge is calculated showing an asymmetric profile in
agreement with observations. The flow profile is calculated from the Navier
Stokes equation leading to a mean velocity which combines charge transport with
neutral mass flow and which describes recent experiments on water bridges.Comment: 10 pages 12 figures, misprints corrected, assumptions more
transparen
Spin waves in magnetic quantum wells with Coulomb interaction and exchange coupling
We theoretically describe the spin excitation spectrum of a two dimensional
electron gas embedded in a quantum well with localized magnetic impurities.
Compared to the previous work, we introduce equations that allow to consider
the interplay between the Coulomb interaction of delocalized electrons and the
exchange coupling between electrons and magnetic impurities. Strong
qualitative changes are found : mixed waves propagate below the single particle
continuum, an anticrossing gap is open at a specific wavevector and the kinetic
damping due to the electron motion strongly influences the coupling strength
between electrons and impurities spins
Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures
We have calculated the plasmon modes in graphene double layer structures at
finite temperatures, taking into account the inhomogeneity of the dielectric
background of the system. The effective dielectric function is obtained from
the solution of the Poisson equation of three-layer dielectric medium with the
graphene sheets located at the interfaces, separating the different materials.
Due to the momentum dispersion of the effective dielectric function, the intra-
and inter-layer bare Coulomb interactions in the graphene double layer system
acquires an additional momentum dependence--an effect that is of the order of
the inter-layer interaction itself. We show that the energies of the in-phase
and out-of-phase plasmon modes are determined largely by different values of
the spatially dependent effective dielectric function. The effect of the
dielectric inhomogeneity increases with temperature and even at high
temperatures the energy shift induced by the dielectric inhomogeneity and
temperature itself remains larger than the broadening of the plasmon energy
dispersions due to the Landau damping. The obtained new features of the plasmon
dispersions can be observed in frictional drag measurements and in inelastic
light scattering and electron energy-loss spectroscopies.Comment: 5 pages, 3 figure
Enhanced carrier scattering rates in dilute magnetic semiconductors with correlated impurities
In III-V dilute magnetic semiconductors (DMSs) such as GaMnAs,
the impurity positions tend to be correlated, which can drastically affect the
electronic transport properties of these materials. Within the memory function
formalism we have derived a general expression for the current relaxation
kernel in spin and charge disordered media and have calculated spin and charge
scattering rates in the weak-disorder limit. Using a simple model for magnetic
impurity clustering, we find a significant enhancement of the charge
scattering. The enhancement is sensitive to cluster parameters and may be
controllable through post-growth annealing.Comment: 4 pages, 3 figure
- …
